Imperial College
L. ondon

1. MOTIVATION AND GOALS

e Porting traditional solvers onto new
hardware is difficult and time-intensive.

* An effective strategy is to raise the level
of abstraction by using domain-specific
languages (DSLs).

e Devito [1,2]is a DSL and compiler for the
automated generation of optimised finite
differences across several computer
platforms, supporting explicit time
marching schemes.

Elevation (m)

e Initially focused on seismic inversion
problems, Devito is broadening its scope

to tackle challenges in Computational
Fluid Dynamics (CFD).

. ; Integrate matrix-free
routines into Devito to automate the
execution of PETSc’s [3] iterative solvers,
facilitating support for implicit kernels.

Distance (m)

Figure 1: Anisotropic elastic wave
propagation featuring immersed
free-surface topography in Devito.

fi fTTfi

https:/ /pixabay.com/photos/wind-energy-wind-turbines-windmills-7394705/

2. DEVITO - A BRIEF INTRODUCTION

Devito allows users to generate optimised solvers in a few lines of
symbolic Python. Below is an example of how to build a simple 2D
diffusion operator.

Step 1: Discretise computational domain via the Grid object.

1x1 grid with 11x11 nodes.

grid = Grid(shape=(11, 11), extent=(1., 1.))

Step 2: Encapsulate field data in TimeFunction.

space_order specifies the discretisation order.
f = TimeFunction(name="f’, grid=grid, space_order=2)

Step 3: Create symbolic expression of PDE using Eq object.

eqn = Eq(f.dt, 0.5 = f.laplace)

Step 4: Rearrange to represent valid state update using solve object.
update = Eq(f.forward, solve(eqn, f.forward))

Step 5: Use Operator object to generate low-level C kernel through a
sequence of compilation passes.

op = Operator (update)

Step 6: Just-in-time (JIT) compile and execute.
op(t=timesteps, dt=dt)

Low-level C loop structure automatically generated:

for (int time = time_.m, t0 = (time)%(2), t1 = ...)

{
for (int x = x_m; x <= xM; x += 1)
{
for (int y = ym; vy <=yM; y += 1)
{
fIt1][x + 2][y + 2] = dt=(r2«f[tO][x + 2][y + 2]
+ (=1.0F)#(r0+£f[t0][x + 2][y + 2] + ... ;

AUTOMATICPETSCCODE GENERATION FOR FINITE DIFFERENCES

/. 0OE LEIBOWITZ, RHODRI NELSON, FABIO LUPORINI, MATHIAS LOUBOUTIN, MATTHEW G. KNEPLEY, LAWRENCE MITCHELL, GERARD GORMAN

3.1. PROOF OF CONCEPT - SETUP

 We solve the 2D lid-driven cavity flow problem. The Devito API is extended to efficiently solve for the pressure field at each time step with an
iterative solver.

e The governing equations are the 2D incompressible Navier-Stokes equations in primitive variables. Two equations govern the velocity components
u, v and one equation governs the pressure p:

%—FU@—FU@_—E@—FV @%—@ (2.1)
ot Ox oy pox ox2 Oy? |’ '
ov ov ov 1 0p 0%v 0%
— tU— +V— = ——— — + — 2.2
ot uax—H}@y p(?y—'_ylﬁaﬂ—l_@yz] ’ (2:2)
0°p 0°%p 0 (Ou Ov ou Ou oudv Ovov
—+—==p|l=(=—+=]-|=——+2——+ —— 2.
FYCIEN p[@t <3az+3y> <(’9azc‘9x+ Dy ax+ayay>]’ (2:3)
where p is the density and v is the kinematic viscosity.
 The domain is given by Q2 = (z,y) € (0,1) x (0,1), p=0 at x = y = 0, and the boundary conditions are as follows:
r=0,1 0<y<1 u:v:@:(), y=0 0<x<1 u:v:@:(), y=1 0<x<1 u=1, ’U:@ZO
Oz Yy dy

3.2. PROOF OF CONCEPT - API

As demonstrated in Section 2, the Grid object is used to setup the discretised domain. The fields u, v, and p are encapsulated within the DSL via
Function/TimeFunction objects. Then, we symbolically express equations 2.1-2.3 as follows:

eq_.u = Eq(u.dt + u*u.dx + v*u.dy, -1./rho * p.dxc + nux(u.laplace))
eq_v = Eq(v.dt + urv.dx + v*v.dy, -1./rho * p.dyc + nux(v.laplace))
eq_p = Eq(p.laplace ,rhox*(1./dt=*(u.dxc+v.dyc)—(u.dxc*u.dxc)+2+(u.dyc*v.dxc)+(v.dyc*v.dyc)))

These equations are then rearranged to denote a valid state update for each field. The velocities u and v are updated explicitly in time.

Eq(u.forward, solve(eq_u, u.forward))

update_u
\% Eq(v.forward, solve(eq_v, v.forward))

update_

We employ a new API object, PETScSolve, to trigger the lowering to PETSc and iteratively solve for the pressure field p.

The solver and preconditioner types are specifed using the solver_parameters argument.
update_p = PETScSolve(eq_p, p, solver_parameters={’'ksp_type’: “gmres’, "pc_type’: ’jacobi’})
Similarly to Section 2, a Devito Operator is created by passing in the update expressions. Following this, the code is JIT compiled and executed.

Note: Implementation details for boundary conditions are omitted for conciseness.

3.3. PROOF OF CONCEPT - LOW LEVEL CODE

Snippet of the generated C code solving the lid-driven cavity flow problem: Snippet of the (matrix-vector) callback used in solving equation 2.3

(utilising a matrix-free method).

PetscCall (DMSetMatType (da ,MATSHELL)) ; PetscErrorCode
PetscCall (DMCreateMatrix (da,&A)); {
PetscCall (MatShellSetContext (A, ctx));

(Mat A, Vec x, Vec y)

PetscScalar** x_arr;
PetscScalar =+ y_arr;
struct MatContext * ctx;

PetscCall (MatShellGetContext (A,&ctx));

PetscCall (KSPCreate (PETSC_ COMM _WORLD, & ksp)) ;
PetscCall (KSPSetType (ksp ,KSPGMRES)) ;

PetscCall (MatShellSetOperation (A,MATOP MULT, ..);
for (int time = time_m, t0 = (time)%(2), t1 = ...)

{

PetscCall (DMDAVecGetArrayRead (da, x_local ,&x_arr));

PetscCall (KSPSolve (ksp,b,p)); for (int x = ctx—->x_m; x <= ctx—>xM; x += 1)

for (int x = x_m; x <= xXM; x += 1) {
{ for (int y = ctx—>y_m; y <= ctx—>y M, y += 1)
for (int y =ym; vy <=yM,;, y += 1) {
{ y_arr[x][y] = -2.0Fspow(ctx—>h_x,-2)*x_arr|[x][y]
ultl]J[x + 2][y + 2] = dt*(nux(u[t0O][x + ...; + pow(ctx—>h_x,-2)*x_arr[x — 1][y] +
vitl][x + 2][y + 2] = dt*(nux(v[tO][x + ...; pow(ctx—>h_x,-2)*x_arr[x + 1][y] + ...;

} }
} }

=PETSc L

DEVITO

3.4. PROOF OF CONCEPT - VALIDATION

- 0.896
0.8 r0.768 0.8
- 0.640

0.6

-0.512 0.6

-0.384

i
1l
0.4 0.256 0% i

0.128

0.2 0.2 1

0.000

—0.128

- 0.304

- 0.228

- 0.152

- 0.076

- 0.000

-—0.076

—-0.152

—0.228

—-0.304

—0.380

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0

T
0.2

T
0.4

T T
0.6 0.8 1.0

Figure 2: Contour plots of horizontal velocity u (left) and vertical

velocity v (right).

10 { == Devito + PETSC
Marchi et al. 2009

.-—"'/
"_'__..-—"" 0.15 -

0.8 4 - 010

0ad{ \

—0.05

—0.10 4
0.2 - \'

\. —0.15

0.0 4 \
—0.20 4

v
/ 0.05 -
0.6 - f
l ~ 0001

7\

= Devito + PETSC
Marchi et al. 2009

0.2 0.0 0.2 0.4 0.6 0.8 10 0.0

0.2 0.4

0.6 0.8 10
X

Figure 3: Validtion - Comparing Devito + PETSc solution with Marchi
et al.(2009) [4]. v at x=0.5 (left), v at y=0.5 (right).

4. FUTURE DIRECTION

e Extend the application areas of Devito
to CFD based problems such as
simulating fluid flow in the context of
wind turbines.

e Optimise the Devito compiler such that
it can generate code that beats hand-
written CFD code.

o Efficient solvers in the realm of CFD
will involve the implementation of
scalable non-linear solvers (via the
SNES library [3]) and support for, e.g,
multi-grid methods (using PCMG [3]).

o

[T

https:/ / pixabay.com/photos/wind-energy
-wind-turbines-windmills-7394705/

5. REFERENCES

[1] Louboutin, Mathias, et al. "Devito (v3. 1.0): an embedded domain-specific language
for finite differences and geophysical exploration." Geoscientific Model Development 12.3

(2019): 1165-1187. (2018).

[2] Luporini, Fabio, et al. "Architecture and performance of Devito, a system for automated
stencil computation." ACM Transactions on Mathematical Software (TOMS) 46.1 (2020): 1-28.
[3] PETSc Web Page. Satish Balay et al. 2023. [Online]. Available: https:/ /petsc.org/

[4] Carlos Henrique Marchi, et al. The lid-driven square cavity flow: numerical solution with
a 1024 x 1024 grid. Journal of the Brazilian Society of Mechanical Sciences and Engineering,

31:186-198, 2009.

Email

o

. o

Ol

Git_Hub

[=]::-

B0

