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1. MOTIVATION AND GOALS

e Porting traditional solvers onto new
hardware is difficult and time-intensive.

* An effective strategy is to raise the level
of abstraction by using domain-specific
languages (DSLs).

e Devito [1,2]is a DSL and compiler for the
automated generation of optimised finite
differences across several computer
platforms, supporting explicit time
marching schemes.
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e Initially focused on seismic inversion
problems, Devito is broadening its scope

to tackle challenges in Computational
Fluid Dynamics (CFD).

. ; Integrate  matrix-free
routines into Devito to automate the
execution of PETSc’s [3] iterative solvers,
facilitating support for implicit kernels.
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Figure 1: Anisotropic elastic wave
propagation featuring immersed
free-surface topography in Devito.
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2. DEVITO - A BRIEF INTRODUCTION

Devito allows users to generate optimised solvers in a few lines of
symbolic Python. Below is an example of how to build a simple 2D
diffusion operator.

Step 1: Discretise computational domain via the Grid object.

# 1x1 grid with 11x11 nodes.

grid = Grid(shape=(11, 11), extent=(1., 1.))

Step 2: Encapsulate field data in TimeFunction.

# space_order specifies the discretisation order.
f = TimeFunction(name="f’, grid=grid, space_order=2)

Step 3: Create symbolic expression of PDE using Eq object.

eqn = Eq(f.dt, 0.5 = f.laplace)

Step 4: Rearrange to represent valid state update using solve object.
update = Eq(f.forward, solve(eqn, f.forward))

Step 5: Use Operator object to generate low-level C kernel through a
sequence of compilation passes.

op = Operator (update)

Step 6: Just-in-time (JIT) compile and execute.
op(t=timesteps, dt=dt)

Low-level C loop structure automatically generated:

for (int time = time_.m, t0 = (time)%(2), t1 = ...)

{
for (int x = x_m; x <= xM; x += 1)
{
for (int y = ym; vy <=yM; y += 1)
{
fIt1][x + 2][y + 2] = dt=(r2«f[tO][x + 2][y + 2]
+ (=1.0F)#(r0+£f[t0][x + 2][y + 2] + ... ;
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3.1. PROOF OF CONCEPT - SETUP

 We solve the 2D lid-driven cavity flow problem. The Devito API is extended to efficiently solve for the pressure field at each time step with an
iterative solver.

e The governing equations are the 2D incompressible Navier-Stokes equations in primitive variables. Two equations govern the velocity components
u, v and one equation governs the pressure p:
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where p is the density and v is the kinematic viscosity.
 The domain is given by Q2 = (z,y) € (0,1) x (0,1), p=0 at x = y = 0, and the boundary conditions are as follows:
r=0,1 0<y<1 u:v:@:(), y=0 0<x<1 u:v:@:(), y=1 0<x<1 u=1, ’U:@ZO
Oz Yy dy

3.2. PROOF OF CONCEPT - API

As demonstrated in Section 2, the Grid object is used to setup the discretised domain. The fields u, v, and p are encapsulated within the DSL via
Function/TimeFunction objects. Then, we symbolically express equations 2.1-2.3 as follows:

eq_.u = Eq(u.dt + u*u.dx + v*u.dy, -1./rho * p.dxc + nux(u.laplace))
eq_v = Eq(v.dt + urv.dx + v*v.dy, -1./rho * p.dyc + nux(v.laplace))
eq_p = Eq(p.laplace ,rhox*(1./dt=*(u.dxc+v.dyc)—(u.dxc*u.dxc)+2+(u.dyc*v.dxc)+(v.dyc*v.dyc)))

These equations are then rearranged to denote a valid state update for each field. The velocities u and v are updated explicitly in time.

Eq(u.forward, solve(eq_u, u.forward))

update_u
\% Eq(v.forward, solve(eq_v, v.forward))

update_

We employ a new API object, PETScSolve, to trigger the lowering to PETSc and iteratively solve for the pressure field p.

# The solver and preconditioner types are specifed using the solver_parameters argument.
update_p = PETScSolve(eq_p, p, solver_parameters={’'ksp_type’: “gmres’, "pc_type’: ’jacobi’})
Similarly to Section 2, a Devito Operator is created by passing in the update expressions. Following this, the code is JIT compiled and executed.

Note: Implementation details for boundary conditions are omitted for conciseness.

3.3. PROOF OF CONCEPT - LOW LEVEL CODE

Snippet of the generated C code solving the lid-driven cavity flow problem: Snippet of the (matrix-vector) callback used in solving equation 2.3

(utilising a matrix-free method).

PetscCall (DMSetMatType (da ,MATSHELL) ) ; PetscErrorCode
PetscCall (DMCreateMatrix (da,&A)); {
PetscCall (MatShellSetContext (A, ctx));

(Mat A, Vec x, Vec y)

PetscScalar** x_arr;
PetscScalar =+ y_arr;
struct MatContext * ctx;

PetscCall (MatShellGetContext (A,&ctx ));

PetscCall (KSPCreate (PETSC_ COMM _WORLD, & ksp ) ) ;
PetscCall (KSPSetType (ksp ,KSPGMRES) ) ;

PetscCall (MatShellSetOperation (A,MATOP MULT, .. );
for (int time = time_m, t0 = (time)%(2), t1 = ...)

{

PetscCall (DMDAVecGetArrayRead (da, x_local ,&x_arr));

PetscCall (KSPSolve (ksp,b,p)); for (int x = ctx—->x_m; x <= ctx—>xM; x += 1)

for (int x = x_m; x <= xXM; x += 1) {
{ for (int y = ctx—>y_m; y <= ctx—>y M, y += 1)
for (int y =ym; vy <=yM,;, y += 1) {
{ y_arr[x][y] = -2.0Fspow(ctx—>h_x,-2)*x_arr|[x][y]
ultl ]J[x + 2][y + 2] = dt*(nux(u[t0O][x + ...; + pow(ctx—>h_x,-2)*x_arr[x — 1][y] +
vitl][x + 2][y + 2] = dt*(nux(v[tO][x + ...; pow(ctx—>h_x,-2)*x_arr[x + 1][y] + ...;

} }
} }
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3.4. PROOF OF CONCEPT - VALIDATION
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Figure 2: Contour plots of horizontal velocity u (left) and vertical

velocity v (right).
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Figure 3: Validtion - Comparing Devito + PETSc solution with Marchi
et al.(2009) [4]. v at x=0.5 (left), v at y=0.5 (right).

4. FUTURE DIRECTION

e Extend the application areas of Devito
to CFD based problems such as
simulating fluid flow in the context of
wind turbines.

e Optimise the Devito compiler such that
it can generate code that beats hand-
written CFD code.

o Efficient solvers in the realm of CFD
will involve the implementation of
scalable non-linear solvers (via the
SNES library [3]) and support for, e.g,
multi-grid methods (using PCMG [3]).
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