
1

High-level abstractions for checkpointing in
PDE-constrained optimisation

Navjot Kukreja1a

Also:
Jan Hückelheim1 Michael Lange2 Mathias Louboutin3 Andrea Walther4

Simon W. Funke5 Gerard J. Gorman1

July 10, 2018

1Department of Earth Science and Engineering, Imperial College London, UK
2European Centre for Medium-range Weather Forecasts, Reading, UK
3Georgia Institute of Technology, United States of America
4University of Paderborn, Germany
5Simula Laboratories, Norway

aThis work was funded by the Intel Parallel Computing Centre at Imperial College London and EPSRC EP/R029423/1
1

Seismic Imaging - Motivation

Full Waveform Inversion (FWI): A PDE-constrained optimisation
problem to understand the earth

Figure 1: Offshore seismic survey

Source: http://www.open.edu/openlearn/science-maths-technology/science/environmental-science/earths-physical-resources-
petroleum/content-section-3.2.1

1

Problem Statement - the Forward Problem

Given source signal qs (at a given location) and the earth’s physical
parameters m, the wave propagation can be simulated using the
equation: 

m d2u(x,t)
dt2 −∇2u(x , t) = qs

u(.,0) = 0
du(x,t)

dt |t=0 = 0

(1)

Sample Devito 1 code to setup a forward operator (F (i)):

pde = m * u.dt2 - u.laplace

stencil = Eq(u.forward, solve(pde, u.forward)[0])

fwd_op = Operator([stencil], ...)

which can be called using:

fwp_op.apply(t_start, t_end)

1Devito (Michael Lange et al. [2017]) is a DSL for rapid development of finite-difference simulations.

2

Data flow

Data flow for forward problem:

F (0) F (1) F (2) F (3) F (4) F (5) · · · F (n)

3

The function u describes the entire wavefield. The signal received at
the specific (given) receiver locations could be seen as:

dsim = Pr u = Pr A(m)−1PT
s qs (2)

where A is the action of the equation 1, Pr is the receiver restriction
operator, and Ps is the source projection operator.

Figure 2: Illustration of the forward problem - simulating the received signal
for a given structure

4

Full Waveform Inversion

Figure 3: Illustration of full waveform inversion - initial guess

5

Full Waveform Inversion

Figure 4: Illustration of full waveform inversion - in progress

6

Full Waveform Inversion

Figure 5: Illustration of full waveform inversion - convergence

7

Problem Statement - Full Waveform Inversion

FWI can be defined as Virieux and Operto [2009]:

minimize
m

Φs(m) =
1
2
‖dsim − dobs‖2

2 (3)

The gradient of the objective function Φs(m) with respect to the model
parameter m is given by Plessix [2006]:

∇Φs(m) =

nt∑
t=1

u[t]vtt [t] (4)

where u[t] is the wavefield in the forward problem and vtt [t] is the
second-derivative of the adjoint (reverse) field. The reverse operator
(R(i)):

rev_op = Operator(...)

8

Data flow

Data flow for gradient calculation:

F (0) F (1) F (2) F (3) F (4) F (5) · · · F (n)

R(n)· · ·R(5)R(4)R(3)R(2)R(1)R(0)

9

Adjoint mode - store all timesteps

Figure 6: Progression of the adjoint computation with wall-clock time on the
x-axis and simulation time on the y-axis. Each vertical cross-section
represents the status at that time. The dots represent checkpoints stored in
memory - in this case, a checkpoint is stored at each time step.
Image Source: Wang et al. [2009]

10

Adjoint mode - checkpointed

Figure 7: Progression of the adjoint computation with wall-clock time on the
x-axis and the simulation time on the y-axis. In this case the number of
checkpoints is less than the timesteps, hence there is some recomputation
involved.
Image Source: Wang et al. [2009]

11

Checkpointing - the schedule

The peak memory consumption can be reduced by storing only a
subset of intermediate results and recomputing the others when
required – this is known as Checkpointing.

A checkpointing schedule gives:

• which intermediate results should be stored during the initial forward
computation

• During the backward computation, how the stored checkpoints are used
to restart the forward computation interleaved with the backward
computation.

12

Optimal schedules

Given a problem with n steps, and a given amount of memory, what is
the checkpointing schedule that minimises the recomputation? i.e. an
optimal schedule

13

Checkpointing - Revolve

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint takes no time

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm, Revolve, was given by Griewank and Walther
[2000]. Given a certain number of steps and a given amount of
memory, Revolve provides the start-stop-restart schedule that
minimises the amount of recomputation.

14

Checkpointing - Online

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm was given by Wang et al. [2009].

15

Checkpointing - Multistage

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm was given by Aupy et al. [2016].

16

Checkpointing - Online Multistage

For the problem where:

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

the optimal algorithm was given by Schanen et al. [2016] and Aupy
and Herrmann [2017].

17

Checkpointing - comparison

store store load load

keep all in memory

runs out of memory here

optimal checkpointing

with asynchronous

runtime

(Revolve)

disk transfer

forward
reverse

Figure 8: Timeline of events for conventional adjoint, Revolve checkpointing,
and asynchronous multistage checkpointing.
Image Source: Kukreja et al. [2018]

18

Checkpointing - Separation of concerns

Given the different kinds of checkpointing algorithms that apply to
different kinds of problems and in different scenarios, it makes sense
to have a library/tool manage checkpointing for Separation of
Concerns.

PyRevolve

19

PyRevolve

• PyRevolve 1 is an open-source library to manage checkpointing within
python

• Based on the original Revolve library

• New API based on callbacks in python makes very few assumptions
about the Operators being checkpointed on the one hand, and the
checkpointing algorithm on the other.

• It only requires Operators that are able to start and stop at any timestep
as provided in the arguments and a deep-copy 2 method that can be
used to save/load checkpoints.

1https://github.com/opesci/pyrevolve

2This may violate assumption 4

20

Sample code to use checkpointing with PyRevolve:

Initialize the two Operators as required

fwd_op = Operator(...)

rev_op = Operator(...)

Which fields need checkpointing

checkpointer = Checkpointer([u])

Initialize PyRevolve - will allocate memory

revolver = Revolver(checkpointer, fwd_op, rev_op, nt,

n_checkpoints)

Run the simulation in forward mode

Stopping to take checkpoints

revolver.apply_forward()

Do something with the result of the forward

Reverse mode - automatically handle restarts

revolver.apply_reverse()
21

Checkpointing - Practical considerations

However, some assumptions are hard to realise in practice.

1. Number of steps is known in advance

2. Only one level of memory available

3. Checkpoint sizes are uniform

4. Saving/retrieving a checkpoint (to first level memory) takes no time
(zero-cost checkpointing)

5. Computational cost of the steps is uniform

6. Cost of restarting operators is zero

22

Zero-cost checkpointing

Most implementations of checkpointing (incuding Tapenade 1) involve
heavy use of deep copies, assuming that these are free.

However, this assumption only holds true when time required for a
computational step F (i) is much larger than time required to copy the
result of F (i) to checkpointing memory.

The deep copies introduce significant overheads when the
computation used to calculate F (i) is a small one (memory-bound).

Can we avoid deep copies?

1A popular algorithmic-differentiation tool that does automatic checkpointing (Hascoët and Pascual [2013])

23

Why is the deep copy required?

The computation is typically designed to work on a myriad of
variables consisting of scalars, arrays, structs etc.

The deep copies move the data from these variables into the
checkpoint storage and back.

Could this be done asynchronously?
Even if a subset of the variables could be used to proceed the
compute while the others are dirty, being a memory-bound
computation, it would compete with the asynchronous copy for
memory bandwidth.

24

Zero-cost checkpointing

25

A section of a forward-recomputation during checkpointing:

...

inbuffer <= deep_copy(ckp[k])

operator(inbuffer, outbuffer)

ckp[k+1] <= deep_copy(outbuffer)

...

Changed implementation:

...

operator(ckp[k], ckp[k+1])

...

26

Zero-cost checkpointing

To satisfy Revolve’s zero-cost-checkpointing assumption (assumption
4), we changed the Operator definition from:

Operator.apply(t_start, t_end)

to:

Operator.apply(t_start, t_end, inbuffer, outbuffer)

and, as a result, removed the deep copy required at every checkpoint
save/restore.

27

Other open problems

• Cost of restarting operators (e.g. time-tiling, function-call overheads)

• Complex data dependencies (e.g. higher order in time, subsampling)

• non-uniform computational cost (e.g. deep learning networks)

• non-uniform checkpoint size (e.g. lossy compression, wavefront-tracking
optimisation for seismic)

· · · F (k − 2) F (k − 1) F (k) · · ·

Figure 9: A neural network’s data flow
is similar to the problem we discussed,
however the different sized layers
make each computational step and
checkpoint different in size

28

Thank you

Thank you

Questions?

29

References i

G. Aupy and J. Herrmann. Periodicity in optimal hierarchical
checkpointing schemes for adjoint computations. Optimization
Methods and Software, 32(3):594–624, 2017.

G. Aupy, J. Herrmann, P. Hovland, and Y. Robert. Optimal multistage
algorithm for adjoint computation. SIAM Journal on Scientific
Computing, 38(3):C232–C255, 2016.

A. Griewank and A. Walther. Algorithm 799: revolve: an
implementation of checkpointing for the reverse or adjoint mode of
computational differentiation. ACM Transactions on Mathematical
Software (TOMS), 26(1):19–45, 2000.

30

References ii

L. Hascoët and V. Pascual. The Tapenade Automatic Differentiation
tool: Principles, Model, and Specification. ACM Transactions On
Mathematical Software, 39(3), 2013. URL
http://dx.doi.org/10.1145/2450153.2450158.

N. Kukreja, J. Hückelheim, and G. J. Gorman. Backpropagation for
long sequences: beyond memory constraints with constant
overheads. arXiv preprint arXiv:1806.01117, 2018.

Michael Lange, Navjot Kukreja, Fabio Luporini, Mathias Louboutin,
Charles Yount, Jan Hückelheim, and Gerard J. Gorman. Optimised
finite difference computation from symbolic equations. In Katy Huff,
David Lippa, Dillon Niederhut, and M. Pacer, editors, Proceedings
of the 16th Python in Science Conference, pages 89 – 97, 2017.
doi: 10.25080/shinma-7f4c6e7-00d.

31

http://dx.doi.org/10.1145/2450153.2450158

References iii

R.-E. Plessix. A review of the adjoint-state method for computing the
gradient of a functional with geophysical applications. Geophysical
Journal International, 167(2):495–503, 2006.

M. Schanen, O. Marin, H. Zhang, and M. Anitescu. Asynchronous
two-level checkpointing scheme for large-scale adjoints in the
spectral-element solver nek5000. Procedia Computer Science, 80:
1147–1158, 2016.

J. Virieux and S. Operto. An overview of full-waveform inversion in
exploration geophysics. Geophysics, 74(6):WCC1–WCC26, 2009.

Q. Wang, P. Moin, and G. Iaccarino. Minimal repetition dynamic
checkpointing algorithm for unsteady adjoint calculation. SIAM
Journal on Scientific Computing, 31(4):2549–2567, 2009.

32

