
Automated MPI-X code generation for scalable finite
difference solvers

George Bisbas1,2, Rhodri Nelson2, Mathias Louboutin3,
Fabio Luporini3 , Paul H.J. Kelly1, Gerard Gorman2,3

1Imperial College London, Dept. of Computing
2Imperial College London, Dept. of Earth Sciences and Engineering
 3Devito Codes, UK

39th IEEE International Parallel & Distributed Processing Symposium June 3-7, 2025

Motivation
● PDEs everywhere in scientific modeling

● Challenge: Building scalable, accurate, and performant HPC
solvers is complex & time-consuming.

● Goal: Automate codegen for HPC-ready solvers. Abstractions
for the win!

2 Cueto et.al. (2022)

Isotropic acoustic and anisotropic acoustic (TTI)

Louboutin et.al.

The Devito DSL and Compiler Framework

● Devito is OSS, Python-embedded and solved PDEs using the
FD-method for structured grids

● Lots of users from academia and industry, interdisciplinary dev
team and user-base, join our SLACK!

● Users leverage high-level DSL using symbolic math abstraction,
and the compiler auto-generates HPC optimized code.
Path to Productivity, Performance and Portability

● Real-world problem simulations (CFD, seismic/medical imaging,
finance, tsunamis, planetary exploration, agriculture)

● High quality testing, performance regression, docker-ready (install
now!)

3 Cueto et.al. (2022)

Isotropic acoustic and anisotropic acoustic (TTI)

Louboutin et.al.

Contributions
● This paper is the result of the development, maintenance,

optimization, and evaluation over 6 years of effort

● We contribute abstractions for a novel end-to-end automated
MPI code generation for real-world FD stencil computations.
NOT toy benchmarks!

● Seamless integration of MPI with:

○ OpenMP/OpenACC/(CUDA/HIP/SYCL in PRO)
○ advanced cache-blocking, flop-reduction and many

other optimizations.

● Comprehensive benchmarking:

○ Four wave propagators with varying memory and
computational needs

○ Strong and weak scaling on 128 CPU nodes (16384 cores)
and 128 GPUs

4

User writes:

eqn = M * u.dt2 + eta
* u.dt - u.laplace

void kernel(...)
{...}

5 myscript.py

nx, ny = 4, 4
nu = .5
dx, dy = 2. / (nx - 1), 2. / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu
grid = Grid(shape=(nx, ny), extent=(2., 2.))

u = TimeFunction(name="u", grid=grid, space_order=2)
u.data[1:-1,1:-1] = 1

eq = Eq(u.dt, u.laplace)
stencil = solve(eq, u.forward)
eq_stencil = Eq(u.forward, stencil)

op = Operator([eq_stencil])
op.apply(time_M=1, dt=dt)

 # No-MPI
 $ python myscript.py
 # With-MPI (2 ranks)
 $ DEVITO_MPI=basic mpirun -n 2 python myscript.py
 # MPI + GPU ready
 # …add DEVITO_PLATFORM=nvidia DEVITO_COMPILER=nvc

A full PDE solver in a few lines of Devito DSL

Generate C-code using the Devito compiler,
JIT-compiler and run

Define the equations to be solved

Define the structured grid

6 myscript.py

nx, ny = 4, 4
nu = .5
dx, dy = 2. / (nx - 1), 2. / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu
grid = Grid(shape=(nx, ny), extent=(2., 2.))

u = TimeFunction(name="u", grid=grid, space_order=2)
u.data[1:-1,1:-1] = 1

eq = Eq(u.dt, u.laplace)
stencil = solve(eq, u.forward)
eq_stencil = Eq(u.forward, stencil)

op = Operator([eq_stencil])
op.apply(time_M=1, dt=dt)

(Dense) Data Access: Support for distributed NumPy arrays

Generate C-code using the Devito compiler,
JIT-compiler and run

Define the structured grid
● The data is physically distributed, but

from the user’s perspective, it remains
a logically centralized entity!

● User interaction with data using
familiar indexing schemes (e.g.,
slicing) without concern about the
underlying layout.

● All works via global-to-local index
conversion.

Define the equations to be solved

Generate C-code using the
Devito compiler

7 myscript.py

nx, ny = 4, 4
nu = .5
dx, dy = 2. / (nx - 1), 2. / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu
grid = Grid(shape=(nx, ny), extent=(2., 2.))

u = TimeFunction(name="u", grid=grid, space_order=2)
u.data[1:-1,1:-1] = 1

eq = Eq(u.dt, u.laplace)
stencil = solve(eq, u.forward)
eq_stencil = Eq(u.forward, stencil)

op = Operator([eq_stencil])
op.apply(time_M=1, dt=dt)

(Dense) Data Access: Support for distributed NumPy arrays
● The data is physically distributed, but

from the user’s perspective, it remains
a logically centralized entity!

● User interaction with data using
familiar indexing schemes (e.g.,
slicing) without concern about the
underlying layout.

● All works via global-to-local index
conversion.

Generate C-code using the Devito compiler,
JIT-compiler and run

Define the structured grid

Define the equations to be solved

Generate C-code using the
Devito compiler

8 myscript.py

nx, ny = 4, 4
nu = .5
dx, dy = 2. / (nx - 1), 2. / (ny - 1)
sigma = .25
dt = sigma * dx * dy / nu
grid = Grid(shape=(nx, ny), extent=(2., 2.))

u = TimeFunction(name="u", grid=grid, space_order=2)
u.data[1:-1,1:-1] = 1

eq = Eq(u.dt, u.laplace)
stencil = solve(eq, u.forward)
eq_stencil = Eq(u.forward, stencil)
sf = SparseFunction(name="sf", grid=grid,...)

op = Operator([eq_stencil])
op.apply(time_M=1, dt=dt)

(Sparse) Data Access: Support for distributed NumPy arrays
● Handling --non-aligned to the

FD-grid-- data
● scatter/gather operations with

dependencies spanning over different
ranks

● Sources/Receivers
● Boundary conditions
● Subdomains
● More complex geometries
● We handle more than “just”

FD-stencils!

Generate C-code using the Devito compiler,
JIT-compiler and run

Define the equations to be solved

It is more than “just” stencils

Define the structured grid

9 myscript.py

(Sparse) Data Access: Support for distributed NumPy arrays

Source injection/Receiver interpolation

The multi-step compilation process
● From symbolic representation to HPC code

● Optimizations at different Intermediate
Representation (IR) levels.

● Cluster-level IR:
○ “Cluster”s symbolic expressions based on

computational properties.
○ Advanced data dependence analysis.

Incorporates DMP/MPI analysis
○ Reduces arithmetic intensity via loop

motion, blocking, factorization, etc.

● Iteration/Expression Tree (IET) IR:
○ Establishes control flow (loops and

expressions).
○ Optimizations tailored to target hardware

(SIMD, OpenMP, OpenACC).
○ Incorporates DMP/MPI synthesis

10

eqn = M * u.dt2 + eta
* u.dt - u.laplace

11

Halo exchanges: an Analysis and Synthesis approach
● Check expression accesses (reads/writes)

u => W : (t1, x + 2, y + 2)
 R : (t0, x + 1, y + 2)
 (t0, x + 2, y + 3)
 (t0, x + 2, y + 2)
 (t0, x + 2, y + 1)
 (t0, x + 3, y + 2)

Are exchanges required? Where?

● Place “exchange hints” at the IR

● Optimize communications
(drop, merge, or move HaloSpots)

● Lower HaloSpots to MPI Calls using their
metadata

<Callable Kernel>
 <Expression r0 = 1/dt>
 <Expression r1 = 1/(h_x*h_x)>
 <Expression r2 = 1/(h_y*h_y)>

 <Iteration time...>

 <Iteration x...>
 <Iteration y...>
 <Expression r3 = -2.0*u[t0,x + 2,y +
2]>
 <Expression u[t1, x + 2, y + 2] =
 dt*(r0*u[t0, x + 2, y + 2] +
...)>

12

Halo exchanges: an Analysis and Synthesis approach
<Callable Kernel>
 <Expression r0 = 1/dt>
 <Expression r1 = 1/(h_x*h_x)>
 <Expression r2 = 1/(h_y*h_y)>

 <Iteration time...>

 <HaloSpot(u)>
 <Iteration x...>
 <Iteration y...>
 <Expression r3 = -2.0*u[t0,x + 2,y +
2]>
 <Expression u[t1, x + 2, y + 2] =
 dt*(r0*u[t0, x + 2, y + 2] +
...)>

● Check expression accesses (reads/writes)

u => W : (t1, x + 2, y + 2)
 R : (t0, x + 1, y + 2)
 (t0, x + 2, y + 3)
 (t0, x + 2, y + 2)
 (t0, x + 2, y + 1)
 (t0, x + 3, y + 2)

Are exchanges required? Where?

● Place “exchange hints” at the IR

● Optimize communications
(drop, merge, or move HaloSpots)

● Lower HaloSpots to MPI Calls using their
metadata

13

Halo exchanges: an Analysis and Synthesis approach
<Callable Kernel>
 <Expression r0 = 1/dt>
 <Expression r1 = 1/(h_x*h_x)>
 <Expression r2 = 1/(h_y*h_y)>

 <Iteration time...>

 <HaloUpdateCall>
 <Iteration x...>
 <Iteration y...>
 <Expression r3 = -2.0*u[t0,x + 2,y +
2]>
 <Expression u[t1, x + 2, y + 2] =
 dt*(r0*u[t0, x + 2, y + 2] +
...)>

● Check expression accesses (reads/writes)

u => W : (t1, x + 2, y + 2)
 R : (t0, x + 1, y + 2)
 (t0, x + 2, y + 3)
 (t0, x + 2, y + 2)
 (t0, x + 2, y + 1)
 (t0, x + 3, y + 2)

Are exchanges required? Where?

● Place “exchange hints” at the IR

● Optimize communications
(drop, merge, or move HaloSpots)

● Lower HaloSpots to MPI Calls using their
metadata

Composing computation/communication patterns

14 Figure style influenced from Li et.al, ICPP 2021

● Neighborhoods help to form the communication
grid (left/right/diagonal) communications

● Help in easily parametrizing MPICall codegen by
determining message size, sender, recipient etc..

● Aliases for data regions help reason about WHO
(ranks) send/receive WHAT (data) to who
1D example:

Supported computation/communication patterns

15

Users only have to add: “ DEVITO_MPI=<mode> mpirun -n #nranks python my_devitoscript.py ”

Figure style influenced from Li et.al, ICPP 2021

Basic Diagonal Full (Com(m/p)) overlap)

Performance evaluation: the benchmarks

16

● Isotropic Acoustic
Low-cost (OI: 2.64), low communication needs (5 fields)

● Isotropic Elastic
Higher-flops (OI: 2.99), increased data movement, high flops (22
fields)

● Anisotropic Acoustic (aka TTI, Zhang-Louboutin variation)
Industrial applications, highest arithmetic intensity (OI: 4.37),
(12 fields)

● Isotropic elastic with viscosity:
High fidelity modelling, (OI:3.44) the highest memory footprint
(36 fields)

🚧 NOT the typical jacobian low-order stencils!
✅ Significantly reduced operational intensity!

Performance evaluation: CPU strong scaling (Archer2-UK HPC)

17

● Dual-socket AMD Zen2 EPYC 7742 (64 cores, 2.25 GHz)

● 128 cores per node (8 NUMA regions, 16 cores/NUMA)

● 32KB L1, 512KB L2 cache/core, 16MB L3 cache/4 cores

● HPE Slingshot interconnect (200 Gb/s, dragonfly topology)

● Cray Clang 11.0.4, Cray MPICH

● 8 MPI ranks/node, 16 OpenMP workers/rank (128

threads/node)

● Strong/weak scaling up to 128 nodes (16,384 cores)

● Space discretization order: 8

● Largest models fitting single-node memory

● 512 ms simulation time

● Metric: Throughput (GPts/s)

Performance evaluation: GPU strong scaling (DiRAC: Tursa-EPCC)

18

● 2x AMD 7413 EPYC 24c processor

● 4x NVIDIA Ampere A100-80 GPUs with NVLink

● Peak FP32: 19.5 TFLOPS, 80GB HBM2e memory per GPU

● 4x 200 Gbps NVIDIA Infiniband interfaces

● nvc++ 23.5-0 compiler

● Strong/weak scaling up to 32 nodes (128 A100-80 GPUs)

● Space discretization order: 8

● Largest models fitting single-node memory

● 512 ms simulation time

● Metric: Throughput (GPts/s)

● We show abstractions that generate speed-of-light HPC code

○ Enables complex simulations with high-level symbolic math

○ Compiler approach automates MPI code generation for PDEs

○ Seamless portability to HPC clusters

○ Competitive throughput and scaling on CPU/GPU clusters

● Future work:

○ Maintenance

○ Performance Optimization

● Check the full paper for more details!

● Nominated for the IPDPS 2025 Open Source Contribution Award

● Website

● Slack

● Code

19

Conclusions - Limitations - Future work

● Luporini, F., Lange, M., Louboutin, M., Kukreja, N., Hückelheim, J., Yount, C., Witte, P.A., Kelly, P.H., Gorman,
G., & Herrmann, F. (2020). Architecture and Performance of Devito, a System for Automated Stencil
Computation. ACM Transactions on Mathematical Software (TOMS), 46, 1 - 28.

● Louboutin, M., M., Lange, F., Luporini, N., Kukreja, P. A., Witte, F. J., Herrmann, P., Velesko, and G. J., Gorman.
"Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical
exploration".Geoscientific Model Development 12, no.3 (2019): 1165–1187.

● Bisbas G., Luporini F., Louboutin M., Nelson R., Gorman G., and Kelly P. H.J. (2021) Temporal blocking of
finite-difference stencil operators with sparse” off-the-grid” sources. IEEE International Parallel and
Distributed Processing Symposium (IPDPS) (pp. 497-506). IEEE.

● Example code available: demo_laplace.c

● MPI tutorial: MPI Jupyter Notebook

References

20

https://gist.github.com/georgebisbas/58a8ceb9c123fff1fe5292ed0603162d#file-demo_laplace-c
https://github.com/devitocodes/devito/blob/main/examples/mpi/overview.ipynb

