
Temporal blocking of finite-difference
stencil operators with sparse off-the-grid sources

George Bisbas1, Fabio Luporini2, Mathias Louboutin3,
Rhodri Nelson1, Gerard Gorman1, Paul H.J. Kelly1

1Imperial College London, 2Devito Codes, 3Georgia Tech

35th IEEE International Parallel &
Distributed Processing Symposium

May 17-21, 2021

2

Talk outline
● Motivation: speed up computationally expensive scientific

simulations involving the solution of PDEs modelling wave
equations through explicit FD methods (seismic and medical
imaging)

● Accelerating through cache optimizations, more specifically
through temporal blocking

● Enabling temporal blocking on practical wave-propagation
simulations is complicated as they consist of sparse
"off-the-grid" operators (Not a typical stencil benchmark!)
=> Applicability issues

● We present an approach to overcome limitations and
enable TB

● Experimental results show improved performance

Modelling practical applications

• Stencils everywhere, not only though.
What else?

• Remarkable amount of work in the past on
optimizing stencils...
(Parallelism, cache optimizations, accelerators)

• Sources injecting and receivers
interpolating at sparse off-the-grid
coordinates.
Non-conventional update patterns.

• Usually their coordinates are not aligned with
the computational grid. How do we iterate
over them?

3

A 1d 3pt stencil update A 3d-19pt stencil update

Off-the-grid operators (Source injection/Receiver interpolation)

Sparse off-the-grid operators

● How a seismic survey looks
like

Source: KrisEnergy 2021

● How a seismic survey looks
like

● Discretizing the computational
domain (the FD-grid). Solution
computed on the points

Sparse off-the-grid operators

Source: KrisEnergy 2021

● How a seismic survey looks
like

● Discretizing the computational
domain (the FD-grid). Solution
computed on the points

● Not-aligned “off-the-grid”
operators exist (source
injection/receiver
interpolation)

Sparse off-the-grid operators

Source: KrisEnergy 2021

A typical time-stepping loop with source injection
• Stencil computation, points on the

domain are updated as a weighted
function of neighbouring points

• Then we update the points that are
affected from sources

• Each source has 3D coordinates

• Indirect accesses are used to scatter
injection to neighbouring points

• Sources are aligned in time, same time
index with points

• Sources are NOT aligned in space, off-the
grid discretization 7

Applying loop-blocking
Loop blocking (aka space blocking, loop tiling):

• Decompose grids into blocks/tiles. Iteration space partitioned to smaller chunks/blocks

• Improved data locality ⇛ Increased performance (Rich literature)

• Sparse off-the-grid operators are iterated as without blocking

8

Applying temporal-blocking

Temporal blocking (Time-Tiling):
• Space blocking but data reuse is extended to time-dimension.
• Update grid points in future where (space) and when (time) possible
• Rich literature, several variants of temporal blocking, shapes, schemes

-Wave-front / Skewed (Approach followed in the paper)
-Diamonds, Trapezoids, Overlapped, Hybrid models

Tanaka et.al. (2018)
9

Off-the-grid operators: the issue

● Data dependences violations happen while a temporal update

● Source injection is in a different iteration space

● When a sparse operator exists in the boundary between space-time blocks, the order of
updates is not preserved

● Solution: Need to align off-the-grid operators

10

Off-the-grid operators: the issue

● Data dependences violations happen while a temporal update

● Source injection is in a different iteration space

● When a sparse operator exists in the boundary between space-time blocks, the order of
updates is not preserved

● Solution: Need to align off-the-grid operators

11

12

Methodology

• A negligible-cost scheme to precompute the source injection
contribution.

• Align source injection data dependences to the grid

• This scheme is applicable to other fields as well (e.g. medical
imaging)

Iterate over sources and store indices of affected points

● Inject to a zero-valued initialized grid for one (or a few more) timesteps

● Hypothesis: non-zero source-injection values at the first time-steps

● Independent of the injection and interpolation type (e.g. non-linear injection)

● Then, we store the non-zero grid point coordinates
13

Generate sparse binary mask, unique IDs and decompose wavefields

● Perform source injection to decompose
the off-the-grid wavefields to on-the-grid
per point wavefields.

● Inject sources to sources

Off-the-grid Aligned

len(sources) n_src n_aff_pts

len(sources.coords) (n_src, 3) (n_aff_pts, 3)

len(sources.data) (n_src, nt) (n_aff_pts, nt)

14

Fuse iteration spaces

• Indirection mapping has changed. We still use indirections but now they are on the
point.

• By using the aligned structure, we fuse the source injection loop inside the kernel

update iteration space.

• The source mask SM is used to add (if 1) or not (if 0) the impact and SID is used to

indirect to the impact values using the traversed grid coordinates.

SIMD? (AVX512)

15

Reducing the iteration space size
• Lots of redundant ops

due to sparsity

• A schedule to perform only
necessary operations

• Aggregate NZ along the
z-axis keeping count of
them in a reduced-size
structure named
nnz_mask

• Reduce the size of SID by
cutting off zero z-slices

16

Non-aligned

Aligned

Aligned to grid
Same OPS
Parallelism
SIMD
Apply TB

17

Everything so far,
automated in Devito DSL

Applying wave-front temporal blocking

• TB with manually editing the Devito generated code
• Skewing factor depends on data dependency distances (higher for higher SO, multigrid)

18
Figure from YASK, Yount et. al (2016)

19

Iterate space-time tiles

Time-stepping in the tile and loop-blocking within
the tile. Collapse outer loops that are loop-blocked

No loop blocking on z-dim, full stride for
max-vectorization performance

Experimental evaluation: the models
• Isotropic Acoustic

Generally known, single scalar PDE, laplacian like,

low cost

• Isotropic Elastic
Coupled system of a vectorial and tensorial PDE,
explosive source, increased data movement, first
order in time, cross-loop data dependencies

• Anisotropic Acoustic (aka TTI)

Industrial applications, rotated laplacian,

coupled system of two scalar PDEs

Industrial-level, 512^3 grid points, 512ms

simulation time, damping fields ABCs

Velocity field, TTI wave propagation after 512ms
20

Experimental evaluation: the results

• Benchmark on Azure VMs
• GCC, ICC
• Thread pinning

• OpenMP, SIMD

• Aggressive auto-tuning
21

• Kernels are flop-optimized

through Devito.

• Gpts/s aka Gcells/s:
time to solution metric in
stencil
computations

• (!) High Gflops/s do not

guarantee a faster solution.

Space order:
• 4
• 8
• 12

Cache-aware roofline model

Temporal Blocking

22

Spatial Blocking

Broadwell, isotropic acoustic, 512^3 grid points, 512ms

Conclusions

 http://www.devitoproject.org

 https://github.com/devitocodes/devito

 https://opesci-slackin.now.sh

• Open-source, on top of Devito v4.2.3 -

https://github.com/georgebisbas/devito

Future plans
➡

• MPI-aware scheme

• GPUs

• High-order stencils

• We presented an approach to apply temporal blocking to stencil kernels with sparse
off-the-grid operators.

• The additional cost is negligible compared to the achieved gains.

• Solution built on top of Devito-DSL

• Performance gains of up to 1.6x on low order (4) and 1.15x on medium order (8).

20

Current WIP
➡

• Integration to DSL

• User will get out-of the box

time tiled code for all PDEs!

http://www.devitoproject.org/
https://github.com/devitocode/devito
https://github.com/georgebisbas/devito
https://github.com/georgebisbas/devito

 http://www.devitoproject.org

 https://github.com/devitocodes/devito

 https://opesci-slackin.now.sh
20

Acknowledgements

Thanks to collaborators and contributors:
• Navjot Kukreja (Imperial College)
• John Washbourne (Chevron)
• Edward Caunt (Imperial College)

http://www.devitoproject.org/
https://github.com/devitocode/devito

25

• Bisbas, G., Luporini, F., Louboutin, M., Nelson, R., Gorman, G., & Kelly, P.H. (2020). Temporal
blocking of finite-difference stencil operators with sparse "off-the-grid" sources. Accepted at
IPDPS’21. Available online: https://arxiv.org/abs/2010.10248

• Luporini, F., Lange, M., Louboutin, M., Kukreja, N., Hückelheim, J., Yount, C., Witte, P.A., Kelly, P.H.,
Gorman, G., & Herrmann, F. (2020). Architecture and Performance of Devito, a System for Automated
Stencil Computation. ACM Transactions on Mathematical Software (TOMS), 46, 1 - 28.

• Louboutin, M., M., Lange, F., Luporini, N., Kukreja, P. A., Witte, F. J., Herrmann, P., Velesko, and G. J.,
Gorman. "Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical
exploration".Geoscientific Model Development 12, no.3 (2019): 1165–1187.

• Yount, C., & Duran, A. (2016). Effective Use of Large High-Bandwidth Memory Caches in HPC Stencil
Computation via Temporal Wave-Front Tiling. (2016) 7th International Workshop on Performance Modeling,
Benchmarking and Simulation of High Performance Computer Systems (PMBS), 65-75.

References

Corner cases, increasing number of sources

The generated C code - stencil update

27

The generated C code - source injection

28

29

From here: https://crd.lbl.gov/departments/computer-science/par/research/roofline/introduction/

Effects of Cache Behavior on Arithmetic Intensity
The Roofline model requires an estimate of total data movement. On cache-based architectures, the
3C's cache model highlights the fact that there can be more than simply compulsory data movement.
Cache capacity and conflict misses can increase data movement and reduce arithmetic intensity.
Similarly, superfluous cache write-allocations can result in a doubling of data movement. The vector
initialization operation x[i]=0.0 demands one write allocate and one write back per cache line touched. The
write allocate is superfluous as all elements of that cache line are to be overwritten. Unfortunately, the
presence of hardware stream prefetchers can make it very difficult to quantify how much beyond
compulsory data movement actually occurred.

Cache aware roofline model

https://crd.lbl.gov/departments/computer-science/par/research/roofline/introduction/

Discover affected
points

Weights of impact

Unrolled loop for
each affected
point, compute
injection part and
add to field

30

31

32

33

Dependency violation

Is this buffered?

34

Missing injection?

35

36

Non-aligned

Aligned

37

Non-aligned

Aligned

Aligned to grid
Same OPS
Parallelism
SIMD (?)
Apply TB

38

The transformation in Devito-DSL

39

u = TimeFunction(name="u", grid=model.grid, space_order=so, time_order=2)

src_term = src.inject(field=u.forward, expr=src * dt**2 / model.m)

pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

stencil = Eq(u.forward, solve(pde, u.forward))

op = Operator([stencil, src_term])

The transformation in Devito-DSL

40

f : perform source injection on an empty grid

f = TimeFunction(name="f", grid=model.grid, space_order=so, time_order=2) src_f

= src.inject(field=f.forward, expr=src * dt**2 / model.m)

op_f = Operator([src_f])
op_f_sum = op_f.apply(time=3)

nzinds = np.nonzero(f.data[0]) # nzinds is a tuple .
.

.
eq0 = Eq(sp_zi.symbolic_max, nnz_sp_source_mask[x, y] - 1, implicit_dims=(time, x, y)) eq1 =
Eq(zind, sp_source_mask[x, y, sp_zi], implicit_dims=(time, x, y, sp_zi))

mask_expr = source_mask[x, y, zind] * save_src[time, source_id[x, y, zind]]
eq2 = Inc(usol.forward[t+1, x, y, zind], mask_expr, implicit_dims=(time, x, y, sp_zi)) pde_2 =

model.m * usol.dt2 - usol.laplace + model.damp * usol.dt

stencil_2 = Eq(usol.forward, solve(pde_2, usol.forward))

Fuse iteration spaces

• Indirection mapping has changed. We still use indirections but now they are on the
point.

• By using the aligned structure, we fuse the source injection loop inside the kernel

update iteration space.

• The source mask SM is used to add (if 1) or not (if 0) the impact and SID is used to

indirect to the impact values using the traversed grid coordinates.

41

