DEVITO V4.3: PRODUCTION-GRADE MULTI-GPU SUPPORT

Fabio Luporini1, Rhodri Nelson2, George Bisbas2, Italo Assis4, Ken Hester3, Gerard Gorman1,2

1. Devito Codes
2. Imperial College London
3. NVidia
4. Federal University of Rio Grande do Norte
Traditional approach to solving PDEs

\[
m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0
\]

void kernel(...) {
 ...
 <impenetrable code with aggressive performance optimizations>
 ...
}
Traditional approach to solving PDEs

MATH

CODE

Space = physics \times discretization \times architecture \times language \times developers

Huge space \Rightarrow Huge cost
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

void kernel(...) {
 ...
 <impenetrable code with aggressive performance optimizations>
 ...
}

Raising the level of abstraction

\[m\frac{\partial^2 u}{\partial t^2} + \eta\frac{\partial u}{\partial t} - \Delta u = 0 \]

void kernel(...) {
 ...
 <impenetrable code with aggressive performance optimizations>
 ...
}
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

eqn = m * u.dt2 + eta * u.dt - u.laplace
Raising the level of abstraction

\[
m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0
\]

eqn = m * u.dt2 + eta * u.dt - u.laplace

void kernel(...) { ... }
Raising the level of abstraction

\[m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0 \]

Devito

eqn = m * u.dt2 + eta * u.dt - u.laplace

void kernel(...) { ... }
Devito: a DSL and compiler for explicit finite differences

- **Open source platform** – MIT license.

- **Python** package — easy to learn

- **Devito is a compiler** that generates optimized parallel code.
 - Supported languages:
 - \{C, SIMD, OpenMP, OpenACC\} + MPI
 - Supported architectures:
 - CPUs: Intel, AMD, ARM
 - GPUs: NVidia, AMD

- **Composability: integrate with existing codes and AI/ML**
 - Works out-of-the-box with other popular packages from the Python ecosystem (e.g. PyTorch, NumPy, Dask, TensorFlow)

- **Best practises software engineering** (testing, CI/CD, …)

- **Cloud ready**
Target applications

- **Seismic imaging**
 - FWI, RTM, LS-RTM (TTI, elastic, visco-elastic propagators, etc.)

- Now maturating strong interest in **medical imaging**

- Generation of high performance **neural networks**

- **CFD problems** in renewable energy

- Black-Scholes in **finance**

- Virtually any partial differential equations on structured grids; more generally, any sort of stencil code
Devito on GPUs

• Implementation needs to take into account:
 • Support for multiple target languages
 • OpenMP, OpenACC
 • potentially: CUDA, HIP, SYCL, …
 • Unreliability of the target languages’ software stack
 • Multi-GPU support:
 • Make it possible to run different shots on different GPUs
 • Single-node multi-GPU via domain decomposition
 • Multi-node multi-GPU via domain decomposition
 • Data movement
 • Data streaming
 • Kernel performance (e.g., register optimization)

This is already quite hard…
… But much harder is the **automation**!

\[
m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \Delta u = 0
\]

\[
eqn = m * u.dt2 + \text{eta} * u.dt - u.laplace
\]

The user expresses the mathematical operators; the same exact DSL code needs to run efficiently on different architectures
The key is decomposition

- Compilation is a hard problem

- The key to success is decomposition: a hard problem is decomposed into many — more manageable and simpler — subproblems

- Here the hard problem is the generation of efficient GPU code

- The subproblems are a series of compilation passes

- Each compilation pass in isolation doesn’t do much. But altogether they solve the problem while ensuring **maintainability** and **extendibility**.
Example: forward propagation with CPU-GPU data streaming

\[m \cdot u_{\text{dt}^2} + \eta \cdot u_{\text{dt}} - u_{\text{laplace}} = 0 \]

\[
\ldots
\]

\[
\ldots
\]

\[
\ldots
\]

\[
\text{usave} = u
\]

\[
\ldots
\]
Example: forward propagation with CPU-GPU data streaming

Compiler pass 1: buffering to decouple CPU-GPU execution

\[m \times u.dt^2 + \eta \times u.dt - u.laplace = 0 \]

\[
\begin{align*}
\text{ubuffer} &= u \\
\text{usave} &= \text{ubuffer}
\end{align*}
\]

Too large for the GPU memory; it will reside on the host
Example: forward propagation with CPU-GPU data streaming

Compiler pass 1: buffering to decouple CPU-GPU execution

\[m \cdot u \cdot dt^2 + \eta \cdot u \cdot dt - u \cdot \text{laplace} = 0 \]

GPU

\text{(thread}_0)\]

\[\text{ubuffer} = u \]

\[\text{...} \]

CPU

\text{(thread}_1)\]

\[\text{usave} = \text{ubuffer} \]

\[\text{...} \]
Example: forward propagation with CPU-GPU data streaming

Compiler pass 2: analysis and placement of synchronizations

\[m \times u.\text{dt}^2 + \eta \times u.\text{dt} - u.\text{laplace} = 0 \]

GPU (thread\(0\))

\[\text{ubuffer} = u \]

\[<\text{wait(lock)}> \]

CPU (thread\(1\))

\[\text{usave} = \text{ubuffer} \]

\[<\text{unset(lock)}> \]
Example: forward propagation with CPU-GPU data streaming

Compiler pass 3: lowering into Abstract Syntax Trees

<loop nest>

GPU (thread_0)
while(lock == 0);

<loop nest>

while(flag != 0)

CPU (thread_1)
<loop nest>
lock = 2;
Example: forward propagation with CPU-GPU data streaming

Compiler pass 4: specialization for the target language

```c
<loop nest>

GPU (thread0)
while(lock == 0);

<loop nest>

while(flag != 0)

CPU (thread1)
#pragma acc update self(... ubuffer ...)

lock = 2;
```
Performance of iso-acoustic benchmark

• Achieved performance
 • 27 GPoints/s
 • This corresponds to slightly less than 1 Teraflops/s
 • The measured arithmetic intensity is 1.5. This means ~53% of the attainable peak

• Benchmark details:
 • Benchmark: O(2, 8), 512³ grid points, 150 timesteps, single precision, NO data streaming
 • System: NVidia V100, nvc 20.9 compiler, NSight Compute for the roofline
 • Optimization: OpenACC, tuned thread block size, all divisions lifted, all arithmetic redundancies eliminated (factorization, time-invariants, etc), constant folding (where reasonable)

• Bottleneck
 • Register pressure => affects occupancy
 • This is an aggressively optimized implementation with OpenACC; we’ll probably need to use a lower level language to push it even higher on the roofline
Sponsors who supported this work

• DUG
• BP
• Shell
• Microsoft
• NVidia
• Intel

• Thanks to our many collaborators and contributors. For a full list of contributors for each release please see https://github.com/devitocodes/devito/releases
GPU support roadmap

- Support for multiple target languages
 - OpenMP, OpenACC
 - potentially: CUDA, HIP, SYCL, …
- Unreliability of the target languages’ software stack
- Multi-GPU support:
 - Make it possible to run different shots on different GPUs
 - Single-node multi-GPU via domain decomposition
 - Multi-node multi-GPU via domain decomposition
- Data movement (optimized)
- Data streaming (optimized)
- Kernel performance (best so far: 27 GPOINTS on iso-acoustic O(2, 8))

Legend:
- **Done**
- **Nearly done**
- **In progress**
- Potentially later this year