
TEMPORAL BLOCKING OF FINITE-DIFFERENCE STENCIL OPERATORS WITH SPARSE "OFF-THE-
GRID" SOURCES IN DEVITO​

George Bisbas1, Fabio Luporini2, Mathias Louboutin3,

Rhodri Nelson1, Gerard Gorman1, Paul Kelly1

1Imperial College London
2Devito Codes
3Georgia Tech

From Data Analysis to High-Performance Computing

joint online conference on

Domain-Specific Languages in High-Performance Computing

and

Intelligent Sensor Data Analysis for Smart Systems

What our work is about

• Temporal Blocking on practical simulations on top of Devito-DSL

• Practical simulations are complicated

• They consist of sparse "off-the-grid" operators
(Not the typical stencil benchmark!)

• Temporal blocking is challenging to apply

• We present an approach to overcome limitations and improve
performance

2

Motivation

• Domain-specific languages in high-performance computing

High level - DSL specification

Optimization passes

HPC generated code

• Current status: Using a DSL to generate high performance code

3

Motivation

• Domain-specific languages in high-performance computing

High level - DSL specification

Optimization passes

HPC generated code

• Current status: Using a DSL to generate high performance code
• Goal : Using a DSL to generate HIGHER performance code

Raise a bit more the

performance bar

4

A bit of background

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths-
-physical--resources--petroleum/content--section--3.2.1

• PDEs are everywhere:
computational fluid dynamics, image processing, weather
forecasting, seismic and medical imaging.

• Numerical analysis => finite-difference (FD) methods to
solve DEs by approximating derivatives with finite differences.

• Devito: Fast Stencil Computation from Symbolic Specification

• Goal:
To improve performance of
stencils stemming from practical
applications using temporal blocking

5

http://www.open.edu/openlearn/science

Stencils are everywhere

• Computing stencils on the FD grid
• Stencils used for benchmarking,

vast literature on optimizing stencils...
• Parallelism (OpenMP, SIMD, MPI)
• From simplistic (1d-3pt), to wide

and complex...

A 1d 3pt stencil update

A 3d-19pt stencil update6

Modelling practical applications

• Not only stencils in the game. What else?
• Sources injecting and receivers interpolating at sparse off-the-grid

coordinates. Non-conventional update patterns.
• Usually their coordinates are not aligned with the computational grid.

How do we iterate over them?

7

8

FD grid

9

FD grid + sparse off-the-grid

10

FD grid + sparse off-the-grid + affected

11

A typical time-stepping loop with source injection

• Iterate over sources, each has 3-d coordinates

• Indirect accesses to scatter injection to neighbouring points

• Aligned in time, not in space

12

Discover affected

points

Weights of impact

Unrolled loop for

each affected

point, compute

injection part and

add to field

13

Applying space-blocking

• Spatial blocking:
• Decompose grids into block tiles/ Partitioning iteration space to

smaller chunks/blocks
• Improve data locality => Increase performance (Rich literature)
• Sparse off-the-grid operators are iterated as without blocking

14

Applying temporal-blocking

• Temporal blocking:
• Space blocking but extend reuse to time-dimension.
• Update grid points in future where/when (space+time) possible
• Rich literature, several variants of temporal blocking,

shapes, schemes
- Wave-front / Skewing (Our POC approach)
- Diamonds, Trapezoids, Overlapped, Hybrid models

Tanaka et.al. (2018)
15

Off-the-grid operators: the issue

• Data dependences violations happen while a temporal update

• When a sparse operator exists in the boundary between space-time blocks, order of
updates is not preserved

• Solution: Need to align off-the-grid operators

16

17

18

19

Dependency violation

Is this buffered?

20

Missing injection?

21

22

Methodology

23

• A scheme to precompute the source injection contribution.

• Align to the grid source injection data dependences

• Negligible cost

• All built using Devito's DS Language

• Applicable to other fields as well

Iterate over sources and store indices of affected points

- Inject to a zero-initialized grid for one (or a few more)

- Hypothesis: non-zero values at the first time-steps

- Automatically generate code with Devito. Independent of the injection and
interpolation type (e.g. non-linear injection)

- Then, we store the non-zero grid point coordinates
24

Generate sparse binary mask, unique IDs
and decompose wavefields

Perform source injection to

decompose the off-the-grid wavefields

to on-the-grid per point wavefields.

Off-the-grid Aligned

len(sources) n_src n_aff_pts

len(sources.coords) (n_src, 3) (n_aff_pts, 3)

len(sources.data) (n_src, nt) (n_aff_pts, nt)

25

Fuse iteration spaces

• Indirection mapping has changed. We still use indirections but now they are on the
point.

• By using the aligned structure, we fuse the source injection loop inside the kernel
update iteration space.

• The source mask SM is used to add (if 1) or not (if 0) the impact and SID is used to
indirect to the impact values using the traversed grid coordinates.

26

Fuse iteration spaces

• Indirection mapping has changed. We still use indirections but now they are on the
point.

• By using the aligned structure, we fuse the source injection loop inside the kernel
update iteration space.

• The source mask SM is used to add (if 1) or not (if 0) the impact and SID is used to
indirect to the impact values using the traversed grid coordinates.

SIMD? (AVX512)

27

Reducing the iteration space size

• Perform only necessary operations
• Aggregate NZ along the z- axis keeping count of them in a structure named nnz_mask.
• Reduce the size of SM and SID by cutting off zero z-slices

28

Non-aligned

Aligned

29

Non-aligned

Aligned

30

Aligned to grid

Same OPS

Parallelism

SIMD (?)

Apply TB

Applying wave-front temporal blocking

• Aligning, automated in DSL; TB with manual loop transformation

• All sources aligned to the grid now. Coordinates aligned with points

• Skewing factor depends on data dependency distances

31

32

Experimental evaluation: the models

• Isotropic Acoustic
Generally known, single scalar PDE, laplacian
like, low cost

• Isotropic Elastic
Coupled system of a vectorial and tensorial
PDE, explosive source, increased data
movement, first order in time, cross-loop
data dependences

• Anisotropic Acoustic
Industrial applications, rotated laplacian,
coupled system of two scalar PDEs

Industrial-level, 512^3 grid points, 512ms
simulation time, damping fields ABCs

Velocity field, TTI wave propagation after 512ms
33

Experimental evaluation: the results

• Benchmark on Azure VMs
• GCC, ICC
• Thread pinning
• OpenMP, SIMD
• Aggressive auto-tuning

34

Cache aware roofline model
Space

order:

• 4

• 8

• 12

Temporal B

Spatial B

Broadwell, acoustic, 512^3 grid points, 512ms
35

The transformation in Devito-DSL

u = TimeFunction(name="u", grid=model.grid, space_order=so, time_order=2)

src_term = src.inject(field=u.forward, expr=src * dt**2 / model.m)

pde = model.m * u.dt2 - u.laplace + model.damp * u.dt

stencil = Eq(u.forward, solve(pde, u.forward))

op = Operator([stencil, src_term])

36

The transformation in Devito-DSL
f : perform source injection on an empty grid

f = TimeFunction(name="f", grid=model.grid, space_order=so, time_order=2)

src_f = src.inject(field=f.forward, expr=src * dt**2 / model.m)

op_f = Operator([src_f])

op_f_sum = op_f.apply(time=3)

nzinds = np.nonzero(f.data[0]) # nzinds is a tuple

.

.

.

eq0 = Eq(sp_zi.symbolic_max, nnz_sp_source_mask[x, y] - 1, implicit_dims=(time, x, y))

eq1 = Eq(zind, sp_source_mask[x, y, sp_zi], implicit_dims=(time, x, y, sp_zi))

mask_expr = source_mask[x, y, zind] * save_src[time, source_id[x, y, zind]]

eq2 = Inc(usol.forward[t+1, x, y, zind], mask_expr, implicit_dims=(time, x, y, sp_zi))

pde_2 = model.m * usol.dt2 - usol.laplace + model.damp * usol.dt

stencil_2 = Eq(usol.forward, solve(pde_2, usol.forward))

37

Conclusions
• We presented an approach to apply temporal blocking on stencil kernels with sparse off-the-grid operators.

• The additional cost is negligible compared to the achieved gains.

• Solution built on top of Devito-DSL

• Performance gains of up to 1.6x on low order (4) and 1.2x on medium order (8).

Website: http://www.devitoproject.org
GitHub: https://github.com/devitocodes/devito
Slack: https://opesci-slackin.now.sh

• Open source, on top of Devito v4.2.3 -
https://github.com/georgebisbas/devito

Future plans➡️
• Integration/ Automation
• GPUs
• High-order stencils

38

Work presented is inherited from: Bisbas, G., Luporini, F., Louboutin, M., Nelson, R., Gorman, G., &

Kelly, P.H. (2020). Temporal blocking of finite-difference stencil operators with sparse "off-the-grid"

sources. Available online: https://arxiv.org/abs/2010.10248

http://www.devitoproject.org
https://github.com/devitocode/devito
https://github.com/georgebisbas/devito

Acknowledgements

Thanks to collaborators and contributors:
• Navjot Kukreja (Imperial College)
• John Washbourne (Chevron)
• Edward Caunt (Imperial College)

Thank you for your attention! Questions?

39

• Bisbas, G., Luporini, F., Louboutin, M., Nelson, R., Gorman, G., & Kelly, P.H. (2020). Temporal blocking of

finite-difference stencil operators with sparse "off-the-grid" sources.

• Luporini, F., Lange, M., Louboutin, M., Kukreja, N., Hückelheim, J., Yount, C., Witte, P.A., Kelly, P.H.,

Gorman, G., & Herrmann, F. (2020). Architecture and Performance of Devito, a System for Automated

Stencil Computation. ACM Transactions on Mathematical Software (TOMS), 46, 1 - 28.

• Louboutin, M., M., Lange, F., Luporini, N., Kukreja, P. A., Witte, F. J., Herrmann, P., Velesko, and G. J.,

Gorman. "Devito (v3.1.0): an embedded domain-specific language for finite differences and geophysical

exploration".Geoscientific Model Development 12, no.3 (2019): 1165–1187.

• Yount, C., & Duran, A. (2016). Effective Use of Large High-Bandwidth Memory Caches in HPC Stencil

Computation via Temporal Wave-Front Tiling. (2016) 7th International Workshop on Performance Modeling,

Benchmarking and Simulation of High Performance Computer Systems (PMBS), 65-75.

References

40

Corner cases, increasing number of sources

The generated C code - stencil update

42

The generated C code - source injection

43

Floor, ceil of off-

the-grid

Weights of impact

Unrolled loop for

each affected

point, compute

injection part and

add to field

44

45

46

From here: https://crd.lbl.gov/departments/computer-science/par/research/roofline/introduction/

Effects of Cache Behavior on Arithmetic Intensity

The Roofline model requires an estimate of total data movement. On cache-based architectures, the

3C's cache model highlights the fact that there can be more than simply compulsory data movement.

Cache capacity and conflict misses can increase data movement and reduce arithmetic intensity.

Similarly, superfluous cache write-allocations can result in a doubling of data movement. The vector

initialization operation x[i]=0.0 demands one write allocate and one write back per cache line touched.

The write allocate is superfluous as all elements of that cache line are to be overwritten. Unfortunately,

the presence of hardware stream prefetchers can make it very difficult to quantify how much beyond

compulsory data movement actually occurred.

Cache aware roofline model

47

https://crd.lbl.gov/departments/computer-science/par/research/roofline/introduction/

