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Motivation
▶ PDE solvers at scale: Solving Partial Differential Equations (PDEs) at

scale to model diverse scientific phenomena is a complex and
time-consuming task. The finite difference (FD) method, commonly used in
practical scientific applications, often results in compute-intensive and
memory-demanding stencil codes that can be challenging to optimize and
scale.

Figure 1: Stencil kernels for practical applications are not always simplistic.
They may have a high number of floating point operations and memory requirements.

▶ Need for automated code generation: Developing scalable HPC
solutions for large-scale simulations can be tedious and error-prone, even for
HPC experts.

▶ The lack of suitable abstractions: Interdisciplinary scientists struggle
to effectively utilize HPC resources for solving real-world problems due to
the lack of suitable abstractions. Abstractions have proven successful in
various fields, such as CFD and ML, by simplifying the complexities of
large-scale scientific simulations.

▶ Devito [1, 2] as a solution: A symbolic DSL and compiler framework
automates the generation of FD solvers, offering a high-level symbolic math
input designed for real-world applications and an optimizing compiler
framework with a primary focus on seismic and medical imaging.

▶ All contributions, code, and benchmarks are open source and available
online.

Contributions
▶ A novel end-to-end software stack that automates and abstracts away

distributed-memory parallelism via Message-Passing Interface
(MPI) code generation within the Devito compiler framework [3].

▶ Seamless integration of MPI, with OpenMP, OpenACC, SIMD
vectorization, cache-blocking, and other performance optimizations,
targeting CPU and GPU clusters.

▶ Flexible code-generation for various computation and communication
patterns to cater to stencil kernels with different compute and memory
requirements.

▶ Support for operations beyond stencils, including sparse sources and
receivers, callbacks for 3rd-party libraries (e.g., lossy compression, FFTs),
essential for real-world applications.

▶ Comprehensive strong scaling evaluation for four wave propagator
stencil kernels, used in academia and industry, scaling up to 16384 CPU
cores and 128 A100 GPUs.

Automated Distributed Memory Parallelism and MPI code-gen
1. The Devito compiler uses a multi-step process involving multiple intermediate-representation levels,

each responsible for applying optimizations for stencil kernels.

2. Devito employs domain decomposition to logically partition the grid among MPI ranks. Devito handles
data access transparently, distributing data to processes according to the decomposition.
The compiler analyzes data dependencies and ensures efficient halo exchanges through optimization
passes, supporting various computation and communication patterns.

3. Three primary communication/computation patterns are supported: Basic involves multi-step
synchronous exchanges. Diagonal uses single-step diagonal exchanges for corner points. Full overlaps
communication and computation, splitting domain computation into CORE and REMAINDER (R)
areas. The best-performing pattern depends on the computation cost, the size of the communicated
halos, and cluster characteristics.

Step A

Step A

Step BStep B

(a) Basic (b) Diagonal

R

R

R

R

R

R

R

RR

R

RR CORE

R

R RR

R

R

RR R

R

RR R

R

R

R

R

RR

R CORE

CORE CORE

(c) Full

Figure 2: Different colors indicate data owned and exchanged by different ranks. Matching colors on different ranks shows the
data updated from neighbors. Basic mode communicates exchanges in a multi-step synchronous manner. Diagonal performs
additional diagonal communications. Full performs communication/computation overlap. The domain is split into CORE and
REMAINDER (R) areas. REMAINDER areas are communicated asynchronously with the CORE computation.

BASIC/DIAGONAL

# Synchronous non -blocking send/

receive to update the domain

# (Multi -step for Basic)/(Single -

step for Diagonal)

halo_update ()

# MPI_Wait for halos

halo_wait ()

# Compute stencil on domain

compute ()

FULL mode

# Asynchronous communication

halo_update ()

# Compute CORE region

compute_core ()

# Wait for halos

halo_wait ()

# Compute the REMAINDER (R) regions

compute_remainder ()

Summary of communication/computation patterns
MPI mode Target Communication Message batches #msgs (3D) Buffer allocation

Basic CPU, GPU Sync, No comp overlap Multi-step 6 runtime (C/C++)
Diagonal CPU Sync, No comp overlap Single-step 26 pre-alloc (Python)
Full CPU ASync, comp overlap Single-step 26 pre-alloc (Python)

Strong scaling cross-comparison

Models were approximated using an 8th order accurate
discretization in space.

▶ Isotropic Acoustic: 5 fields, 290 timesteps, 2nd order in
time

▶ Tilted Transverse Isotropic Acoustic (TTI): 12 fields, 290
timesteps, 2nd order in time

▶ Isotropic Elastic: 22 fields, 363 timesteps, 1st order in time

▶ ViscoElastic: 36 fields, 251 timesteps, 2nd order in time

This work used 128 nodes of AMD EPYC 7742 on ARCHER2
UK Supercomputer [4] and 128 A100 GPUs on Tursa [5].
More details on the setup are available in the full paper [3].
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Figure 3: Numbers on the ideal line show the percentage of the achieved ideal efficiency (Gpts/s for N nodes)/((Gpts/s for 1 node) * N).
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Figure 4: Numbers on the ideal line show the percentage of the achieved ideal efficiency (Gpts/s for N GPUs)/((Gpts/s for 1 GPU) * N).


