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Motivation
▶ PDE solvers at scale: Modeling diverse scientific phenomena

through Partial Differential Equations (PDEs) on a large scale is
intricate and time-consuming. The finite difference (FD) method,
widely applied in practical scientific scenarios, often yields
compute-intensive and memory-demanding stencil codes.

Figure 1: Stencil kernels for practical applications are not always simplistic. They
may have a high number of floating point operations and memory requirements.

▶ Need for automated code generation: Crafting scalable and
performance-efficient solutions for large-scale simulations can be
tedious and error-prone, even for HPC specialists.

▶ The lack of suitable abstractions: The ability of
interdisciplinary scientists to efficiently leverage HPC resources for
solving real-world problems is hampered. Abstractions are key to
addressing the complexities of large-scale scientific simulations and
have demonstrated success in various fields, including CFD and
ML.

▶ Devito [1, 2] as a solution: A symbolic DSL and compiler
framework automates the generation of FD solvers, offering a
high-level symbolic math input designed for real-world applications
and an optimizing compiler framework with a primary focus on
seismic and medical imaging.

Contributions
▶ A novel end-to-end software stack that automates and

abstracts away distributed-memory parallelism via
Message-Passing Interface (MPI) code generation within the
Devito compiler framework [3].

▶ Seamless integration of MPI, with OpenMP, SIMD
vectorization, cache-blocking, and other performance
optimizations. OpenMP offloading and OpenACC are also
supported for GPUs.

▶ Flexible code-generation for various computation and
communication patterns to cater to stencil kernels with different
compute and memory requirements.

▶ Support for operations beyond stencils, including sparse
sources and receivers, callbacks for 3rd-party libraries (e.g., lossy
compression, FFTs), essential for real-world applications.

▶ A comprehensive strong scaling cross-comparison
evaluation for four wave propagator stencil kernels, used in
academia and industry, scaling up to 16384 CPU cores.

Automated Distributed Memory Parallelism and MPI code generation
1. The Devito compiler uses a multi-step process involving multiple intermediate-representation levels,

each responsible for applying optimizations for stencil kernels.

2. Devito employs domain decomposition to logically partition the grid among MPI ranks. Devito
handles data access transparently, distributing data to processes according to the decomposition.
The compiler analyzes data dependencies and ensures efficient halo exchanges through optimization
passes, supporting various computation and communication patterns.

3. Three primary communication/computation patterns are supported: Basic involves multi-step
synchronous exchanges. Diagonal uses single-step diagonal exchanges for corner points. Full overlaps
communication and computation, splitting domain computation into CORE and REMAINDER (R)
areas. The best-performing pattern depends on the computation cost, the size of the communicated
halos, and cluster characteristics.
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Figure 2: Different colors indicate data owned and exchanged by different ranks. Matching colors on different ranks shows the
data updated from neighbors. Basic mode communicates exchanges in a multi-step synchronous manner. Diagonal performs
additional diagonal communications. Full performs communication/computation overlap. The domain is split into CORE and
REMAINDER (R) areas. REMAINDER areas are communicated asynchronously with the CORE computation.

BASIC/DIAGONAL

# Synchronous non -blocking send/

receive to update the domain ,

# (Multi -step for Basic)/(Single -

step for Diagonal)

halo_update ()

# MPI_Wait for halos

halo_wait ()

# Compute stencil on domain

compute ()

FULL mode

# Asynchronous communication

halo_update ()

# Compute CORE region

compute_core ()

# Wait for halos

halo_wait ()

# Compute the REMAINDER (R) regions

compute_remainder ()

Summary of communication/computation patterns
MPI mode Communications steps for message

batches
#messages
(3D problem)

Comp/Comm
Overlap

Buffer allocation

Basic Sync Multiple 6 No runtime (C/C++)
Diagonal Sync Single 26 No pre-alloc (Python)
Full ASync Single 26 Yes pre-alloc (Python)

Strong scaling cross-comparison
Models were approximated using an 8th order accurate discretization in space.

▶ Isotropic Acoustic: 10243 grid, 5 fields, 290 timesteps, 2nd order in time

▶ Tilted Transverse Isotropic Acoustic (TTI): 10243 grid, 12 fields, 290
timesteps, 2nd order in time

▶ Isotropic Elastic: 10243 grid, 22 fields, 363 timesteps, 1st order in time

▶ ViscoElastic: 7683 grid, 36 fields, 251 timesteps, 2nd order in time

This work used the ARCHER2 UK Supercomputer [4], 128 nodes of AMD Zen2
(Rome) EPYC 7742 64-core 2.25GHz processor, 128 cores per node, 8 MPI
ranks per node, pinned to NUMA nodes, 16 OpenMP threads per rank, totaling
16384 CPU cores, HPE Slingshot with 200Gb/s interconnect.
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Figure 3: Strong scaling for the evaluated kernels. Numbers on the ideal line show the
percentage of the achieved ideal efficiency (Gpts/s for N nodes)/((Gpts/s for 1 node) * N).

▶ All contributions, code, and benchmarks are open source and available
online.
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