Automatic code generation - developing high performance propagators better, faster and cheaper.

G. Gorman1 M. Lange1 F. Luporini1 M. Louboutin2 \\
N. Kukreja1 P. Witte2 C. Yount3 F. Hermann2

June 13, 2017

1Department of Earth Science and Engineering, Imperial College London, UK \\
2Seismic Lab. for Imaging and Modeling, The University of British Columbia, Canada \\
3Intel Corporation
Something is rotten in the state of Denmark...

Seismic inversion is extremely computationally demanding!

Yet new models are built around bespoke operators...

- Discretization and numerical methods are chosen a priori ¹
- Performance optimization repeated for each architecture
- Requires many person-months (years) to develop new algorithms

Complex algorithms need end-to-end optimization

- Optimization at various levels of expertise
- Domain-specialists, numericists and compiler experts ...
- But we can’t all be polymaths. We need separation of concerns!

Symbolic computation is a powerful tool!

- **FEniCS / Firedrake** - Finite element DSL packages

Velocity-stress formulation of elastic wave equation, with isotropic stress:

\[
\rho \frac{\partial \mathbf{u}}{\partial t} = \nabla \cdot \mathbf{T}
\]

\[
\frac{\partial \mathbf{T}}{\partial t} = \lambda (\nabla \cdot \mathbf{u}) \mathbb{I} + \mu \left(\nabla \mathbf{u} + \nabla \mathbf{u}^T \right)
\]

Weak form of equations written in UFL \(^1\):

\[
F_u = \text{density} \times \text{inner}(\mathbf{w}, (\mathbf{u} - \mathbf{u}_0)/\partial t) \times dx - \text{inner}(\mathbf{w}, \text{div}(\mathbf{s}_0)) \times dx
\]

\[
\text{solve}(\text{lhs}(F_u) == \text{rhs}(F_u), \mathbf{u})
\]

Symbolic computation is a powerful tool!

Dolfin-Adjoint: Symbolic adjoints from symbolic PDEs\(^1\)

- Solves complex optimisation problems
- 2015 Wilkinson prize winner

Below is the optimal design of a double pipe that minimises the dissipated power in the fluid.

Devito - Automated finite difference propagators

For Seismic imaging we need to solve inversion problems

- Finite difference solvers for forward and adjoint runs
- Different types of wave equations with large complicated stencils

Many stencil languages exist, but few are practical

- Stencil still written by hand!
Devito - Automated finite difference propagators

- **SymPy** - Symbolic computer algebra system in pure Python\(^1\)

 - Features:
 - Complex symbolic expressions as Python object trees
 - Symbolic manipulation routines and interfaces
 - Convert symbolic expressions to numeric functions
 - Python (NumPy) functions; C or Fortran kernels
 - For a great overview see A. Meuer's talk at SciPy 2016

For specialised domains generating C code is not enough!

- Compiler-level optimization to leverage performance
- Stencil optimization is a research field of its own

Devito: a finite difference DSL for seismic imaging

- Generates highly optimized stencil code
 - OpenMP threading and vectorisation pragmas
 - Cache blocking and auto-tuning
 - Symbolic stencil optimisation

- From concise mathematical syntax

 Acoustic wave equation:

 \[
 m \frac{\partial^2 u}{\partial t^2} + \eta \frac{\partial u}{\partial t} - \nabla u = 0
 \]

 can be written as

 \[
 eqn = m \ast u.dt2 + eta \ast u.dt - u.laplace
 \]
Devito - Automated finite difference propagators

Development is driven by real-world problems!

- Productivity through code generation
 - Variable numerical discretisation stencil size
 - Individual operators in 10s of lines of code
 - Complete problem setups in a few 100 lines

- Fast high-order operators for inversion problems
 - Automated performance optimisation
 - Customization through hierarchical API
Devito - Automated finite difference propagators

Development is driven by real-world problems!

- **Devito Data Objects**

 $u = \text{TimeData}(\text{'u'}, \text{shape}=(nx, ny))$

 $m = \text{DenseData}(\text{'m'}, \text{shape}=(nx, ny))$

- **Stencil Equation**

 $eqn = m \ast u.\text{dt2} - u.\text{laplace}$

- **Devito Operator**

 $op = \text{Operator}(eqn)$

- **Devito Compiler**

 GCC — Clang — Intel® — Intel® Xeon Phi™

 $op.\text{compiler} = \text{IntelMIC}$

- High-level function symbols associated with user data
- Symbolic equations that expand Finite Difference stencils
- Transform stencil expressions into explicit array accesses
- Compiles and loads Platform specific executable function
Wave propagators in less than 100 lines

def forward(model, m, eta, src, rec, order=2, save=True):
 # Create the wavefield function
 u = TimeData(name='u', shape=model.shape, save=save,
 time_order=2, space_order=order)

 # Derive stencil from symbolic equation
 eqn = m * u.dt2 - u.laplace + eta * u.dt
 stencil = solve(eqn, u.forward)[0]
 update_u = [Eq(u.forward, stencil)]

 # Inject wave as source term
 src_term = src.inject(field=u, expr=src * dt**2 / m)

 # Interpolate wavefield onto receivers
 rec_term = rec.interpolate(expr=u)

 # Create operator with source and receiver terms
 return Operator(update_u + src_term + rec_term,
 subs={s: dt, h: model.spacing})
Wave propagators in less than 100 lines

```python
def adjoint(model, m, eta, src, rec, order=2):
    # Create the adjoint wavefield function
    v = TimeData(name='v', shape=model.shape,
                  time_order=2, space_order=order)

    # Derive stencil from symbolic equation
    eqn = m * v.dt2 - v.laplace - eta * v.dt
    stencil = solve(eqn, u.forward)[0]
    update_v = [Eq(v.backward, stencil)]

    # Inject the previous receiver readings
    rec_term = rec.inject(field=v, expr=rec * dt**2 / m)

    # Interpolate the adjoint-source
    src_term = src.interpolate(expr=v)

    # Create operator with source and receiver terms
    return Operator(update_v + rec_term + src_term,
                    subs={s: dt, h: model.spacing},
                    time_axis=Backward)
```

Devito - Automated finite difference propagators
Wave propagators in less than 100 lines

def gradient(model, m, eta, srca, rec, order=2):
 # Create the adjoint wavefield function
 v = TimeData(name='v', shape=model.shape,
 time_order=2, space_order=order)

 # Derive stencil from symbolic equation
 eqn = m * v.dt2 - v.laplace - eta * v.dt
 stencil = solve(eqn, u.forward)[0]
 update_v = [Eq(v.backward, stencil)]

 # Inject the previous receiver readings
 rec_term = rec.inject(field=v, expr=rec * dt**2 / m)

 # Gradient update terms
 grad = DenseData(name='grad', shape=model.shape)
 grad_update = Eq(grad, grad - u.dt2 * v)

 # Create operator with source and receiver terms
 return Operator(update_v + [grad_update] + rec_term
 subs={s: dt, h: model.spacing},
 time_axis=Backward)
Devito - Automated finite difference propagators

Reverse time migration in less than 100 lines

```python
# Create the true and a smoothed model
m_true = Model(...)  
m_smooth = Model(...)

# Create operators for forward and gradient
op_forward = forward(...)  
op_gradient = forward(...)  

# Create gradient field and loop over shots
grad = DenseData(name='grad', shape=model.shape)

for shot in shots:
    # Create receiver data from true model
    src = PointData(shot.source, ...)  
    rec_true = PointData(shot.receiver.coordinates, ...)  
    op_forward(src=src, rec=rec_true, m=m_true)

    # Run forward modelling operator with smooth model
    u = TimeData(name='u', shape=model.shape,  
                 time_order=2, space_order=order)  
    rec_smooth = PointData(shot.receiver.coordinates, ...)  
    op_forward(u=u, src=src, rec=rec_smooth, m=m_smooth)

    # Compute gradient update from the residual
    v = TimeData(name='v', shape=model.shape,  
                 time_order=2, space_order=order)  
    residual = rec_true.data[:] - rec_smooth.data[:]
    op_gradient(u=u, v=v, grad=grad, rec=residual, m=m_smooth)
```
Devito - Automated finite difference propagators

Rapid propagator development and integration

- Test and verify in Python
- Operators in < 20 lines
- RTM loop in < 100 lines
- Variable stencil order
Devito - Automated finite difference propagators

From math to tuned HPC code in a few lines:

\[
\begin{align*}
\frac{m}{\rho} \frac{d^2 p(x, t)}{dt^2} & - (1 + 2\epsilon)(G_{xx} + G_{yy}) p(x, t) - \sqrt{1 + 2\delta} G_{zz} r(x, t) = q, \\
\frac{m}{\rho} \frac{d^2 r(x, t)}{dt^2} & - \sqrt{1 + 2\delta} (G_{xx} + G_{yy}) p(x, t) - G_{zz} r(x, t) = q, \\
p(., 0) &= 0, \\
\frac{dp(x, t)}{dt} \bigg|_{t=0} &= 0, \\
r(., 0) &= 0, \\
\frac{dr(x, t)}{dt} \bigg|_{t=0} &= 0,
\end{align*}
\]

\begin{align*}
D_{x1} &= \cos(\theta)\cos(\phi) \frac{d}{dx} + \cos(\theta)\sin(\phi) \frac{d}{dy} - \sin(\theta) \frac{d}{dz} \\
D_{x2} &= \cos(\theta)\cos(\phi) \frac{d}{dx} + \cos(\theta)\sin(\phi) \frac{d}{dy} - \sin(\theta) \frac{d}{dz} \\
G_{xx} &= \frac{1}{2} \left(D_{x1}^{T}(\frac{1}{\rho})D_{x1} + D_{x2}^{T}(\frac{1}{\rho})D_{x2} \right)
\end{align*}

(incomplete) specification of a TTI (Tilted Transverse Isotropy) forward operator

rotated second order differential operators

Devito - Automated finite difference propagators

From math to tuned HPC code in a few lines:

\[
\text{ang0, ang1} = \cos(\theta), \sin(\theta) \\
\text{ang2, ang3} = \cos(\phi), \sin(\phi) \\
\text{Gyp} = (\text{ang3} \times u.d_x - \text{ang2} \times u.d_y) \\
\text{Gyy} = \left(\text{first_derivative}(\text{Gyp} \times \text{ang3}, \text{dim}=x, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) - \right. \\
\left. \text{first_derivative}(\text{Gyp} \times \text{ang2}, \text{dim}=y, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Gyp2} = (\text{ang3} \times u.d_x - \text{ang2} \times u.d_y) \\
\text{Gyy2} = \left(\text{first_derivative}(\text{Gyp2} \times \text{ang3}, \text{dim}=x, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) - \right. \\
\left. \text{first_derivative}(\text{Gyp2} \times \text{ang2}, \text{dim}=y, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Gxp} = (\text{ang0} \times \text{ang2} \times u.d_x + \text{ang0} \times \text{ang3} \times u.d_y - \text{ang1} \times u.d_z) \\
\text{Gzr} = (\text{ang1} \times \text{ang2} \times v.d_x + \text{ang1} \times \text{ang3} \times v.d_y + \text{ang0} \times v.d_z)
\]

\[
\text{Gxx} = \left(\text{first_derivative}(\text{Gxp} \times \text{ang0} \times \text{ang2}, \text{dim}=x, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gxp} \times \text{ang0} \times \text{ang3}, \text{dim}=y, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) - \right. \\
\left. \text{first_derivative}(\text{Gxp} \times \text{ang1}, \text{dim}=z, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Gzz} = \left(\text{first_derivative}(\text{Gzr} \times \text{ang1} \times \text{ang2}, \text{dim}=x, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gzr} \times \text{ang1} \times \text{ang3}, \text{dim}=y, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gzr} \times \text{ang0}, \text{dim}=z, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Gxp2} = (\text{ang0} \times \text{ang2} \times u.d_x + \text{ang0} \times \text{ang3} \times u.d_y - \text{ang1} \times u.d_z) \\
\text{Gzr2} = (\text{ang1} \times \text{ang2} \times v.d_x + \text{ang1} \times \text{ang3} \times v.d_y + \text{ang0} \times v.d_z)
\]

\[
\text{Gxx2} = \left(\text{first_derivative}(\text{Gxp2} \times \text{ang0} \times \text{ang2}, \text{dim}=x, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gxp2} \times \text{ang0} \times \text{ang3}, \text{dim}=y, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) - \right. \\
\left. \text{first_derivative}(\text{Gxp2} \times \text{ang1}, \text{dim}=z, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Gzz2} = \left(\text{first_derivative}(\text{Gzr2} \times \text{ang1} \times \text{ang2}, \text{dim}=x, \text{side}=\text{right}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gzr2} \times \text{ang1} \times \text{ang3}, \text{dim}=y, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) + \right. \\
\left. \text{first_derivative}(\text{Gzr2} \times \text{ang0}, \text{dim}=z, \text{side}=\text{centered}, \text{order}=\text{space_order}, \text{matvec}=\text{transpose}) \right)
\]

\[
\text{Hp} = -(.5 \times \text{Gxx} + .5 \times \text{Gxx2} + .5 \times \text{Gyy} + .5 \times \text{Gyy2}) \\
\text{Hzr} = -(.5 \times \text{Gzz} + .5 \times \text{Gzz2})
\]

\[
\text{stencilp} = 1.0 / \left((2.0 \times m + s \times \text{damp}) \times (4.0 \times m \times u + (s \times \text{damp} - 2.0 \times m) \times u.\text{backward} \right. \\
\left. + 2.0 \times s^{*2} \times (\text{epsilon} \times \text{Hp} + \text{delta} \times \text{Hzr}) \right)
\]

\[
\text{stencilr} = 1.0 / \left((2.0 \times m + s \times \text{damp}) \times (4.0 \times m \times v + (s \times \text{damp} - 2.0 \times m) \times v.\text{backward} \right. \\
\left. + 2.0 \times s^{*2} \times (\text{delta} \times \text{Hp} + \text{Hzr}) \right)
\]
From math to tuned HPC code in a few lines:

```python
def forward(model, m, eta, epsilon, delta, theta, phi, src, rec, order=2):
    # Create two wavefields
    u = TimeData(name='u', shape=model.shape, time_order=2, space_order=order)
    v = TimeData(name='v', shape=model.shape, time_order=2, space_order=order)

    # Create update expressions from stencil
    stencilp, stencilr = ...
    update_u = Eq(u.forward, stencilp)
    update_v = Eq(v.forward, stencilr)

    # Inject wave as source term
    src_term = src.inject(field=u, expr=src * dt**2 / m)
    src_term += src.inject(field=v, expr=src * dt**2 / m)

    # Interpolate wavefield onto receivers
    rec_term = rec.interpolate(expr=u)

    # Create operator with source and receiver terms
    return Operator([update_u, update_v] + src_term + rec_term,
                     subs={s: dt, h: model.spacing})```

Devito - Automated finite difference propagators
Devito - Automated finite difference propagators

Summary:

- **Productivity through code generation**
  - Acoustic operators in < 20 lines
  - TTI operators in < 100 lines
  - Variable discretization and stencil order
  - Fully executable Python code, easy to experiment
  - Complete problem setups in < 1000 lines

- **Fast wave propagators for inversion problems**
  - Highly efficient development through automation
  - Interoperability: Generated code is low-level C
  - **Automated performance optimisation**
The compilation flow: from symbolics to HPC code

Symbolic equations

Data objects

Analysis

DSE - Devito Symbolic Engine

Loop scheduler

DLE - Devito Loop Engine

Declarations, headers, …

Code generation

C, MPI, OpenMP
The compilation flow: from symbolics to HPC code

Symbolic equations

Data objects

Analysis

DSE - Devito Symbolic Engine

Loop scheduler

DLE - Devito Loop Engine

Declarations, headers, …

Code generation

“FLOPS”

OPTIMIZATIONS

C, MPI, OpenMP
The compilation flow: from symbolics to HPC code

Symbolic equations
- SymPy

Data objects
- NumPy

Analysis
- DSE - Devito Symbolic Engine
- Loop scheduler
- DLE - Devito Loop Engine
- Declarations, headers, …

Code generation

“FLOPS” OPTIMIZATIONS

“MEMORY” OPTIMIZATIONS

C, MPI, OpenMP
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
  - C compilers do it already… but necessary for symbolic processing and compilation speed
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

• Common sub-expressions elimination
  • C compilers do it already… but necessary for symbolic processing and compilation speed

• Heuristic factorization of recurrent terms
  • E.g., finite difference weights: \(0.3*a + \ldots + 0.3*b \Rightarrow 0.3*(a+b)\)
  • Many possibilities (doesn’t leverage domain properties yet!)
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
  - C compilers do it already… but necessary for symbolic processing and compilation speed

- Heuristic factorization of recurrent terms
  - E.g., finite difference weights: $0.3a + \ldots + 0.3b \Rightarrow 0.3(a+b)$
  - Many possibilities (doesn’t leverage domain properties yet!)

**Factorization impact:**

TTI, space order 4: $1100 \rightarrow 950$
TTI, space order 8: $2380 \rightarrow 2120$
TTI, space order 12: $4240 \rightarrow 3760$
TTI, space order 16: $6680 \rightarrow 5760$
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
  - C compilers do it already… but necessary for symbolic processing and compilation speed

- Heuristic factorization of recurrent terms
  - E.g., finite difference weights: \(0.3*a + \ldots + 0.3*b \Rightarrow 0.3*(a+b)\)
  - Many possibilities (doesn’t leverage domain properties yet!)
A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
  - C compilers do it already… but necessary for symbolic processing and compilation speed

- Heuristic factorization of recurrent terms
  - E.g., finite difference weights: \(0.3a + \ldots + 0.3b \Rightarrow 0.3(a+b)\)
  - Many possibilities (doesn’t leverage domain properties yet!)

- Fundamental in compute-bound stencil codes (e.g., TTI)
  - E.g., \(\sin(\phi[i,j,k]), \sin(\phi[i-1,j-1,k-1])\)
DSE’s aliases detection algorithms

Fundamental in compute-bound stencil codes (e.g., TTI)

\[
\text{tmpl} = \ldots \times \sin(\phi[i, j, k]) + \ldots + 0.4 \times \sin(\phi[i-1, j-1, k-1]) + \ldots + \\
\ldots 0.1 \times \sin(\phi[i+2, j+2, k+2]) + \ldots
\]

**Observations (focus on underlined sub-expressions)**
- Same operators \(\sin\)
- Same operands \(\phi\)
- Same indices \((i, j, k)\)
- Linearly dependent index vectors \([i, j, k], [i-1, j-1, k-1], [i+2, j+2, k+2]\)
DSE's aliases detection algorithms

Alias detection

Fundamental in compute-bound stencil codes (e.g., TTI)

tmp1 = \ldots \cdot \sin(\phi_{i,j,k}) + \ldots + 0.4 \cdot \sin(\phi_{i-1,j-1,k-1}) + \ldots +
\ldots 0.1 \cdot \sin(\phi_{i+2,j+2,k+2}) + \ldots

Observations (focus on underlined sub-expressions)
- Same operators ($\sin$)
- Same operands ($\phi$)
- Same indices ($i$, $j$, $k$)
- Linearly dependent index vectors ([i, j, k], [i-1, j-1, k-1], [i+2, j+2, k+2])

$\mathbf{B}_{i,j,k} = \sin(\phi_{i,j,k})$

$\text{tmp1} = \ldots \cdot \mathbf{B}_{i,j,k} + \ldots + 0.4 \cdot \mathbf{B}_{i-1,j-1,k-1} + \ldots + \ldots + 0.1 \cdot \mathbf{B}_{i+2,j+2,k+2} + \ldots$
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- **Common sub-expressions elimination**
  - C compilers do it already… but necessary for symbolic processing and compilation speed

- **Heuristic factorization of recurrent terms**
  - E.g., finite difference weights: $0.3\ast a + \ldots + 0.3\ast b \Rightarrow 0.3\ast(a+b)$
  - Many possibilities (doesn’t leverage domain properties yet!)

- **Fundamental in compute-bound stencil codes (e.g., TTI)**
  - E.g., $\sin(\phi[i,j,k]), \sin(\phi[i-1,j-1,k-1])$
Devito Symbolic Engine

A sequence of compiler passes to reduce FLOPS (no loops at this stage!)

- Common sub-expressions elimination
  - C compilers do it already… but necessary for symbolic processing and compilation speed

- Heuristic factorization of recurrent terms
  - E.g., finite difference weights: \( 0.3a + \ldots + 0.3b \Rightarrow 0.3(a+b) \)
  - Many possibilities (doesn’t leverage domain properties yet!)

- Fundamental in compute-bound stencil codes (e.g., TTI)
  - E.g., \( \sin(\phi[i,j,k]), \sin(\phi[i-1,j-1,k-1]) \)

- Heuristic hoisting of time-invariant quantities
  - Currently, only (expensive) trigonometric functions applied to space-varying quantities
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- Cache optimizations (mostly L1 cache)
- Loop fission + elemental functions (register locality)
- Padding + data alignment (split loads)
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- Cache optimizations (mostly L1 cache)
- Loop fission + elemental functions (register locality)
- Padding + data alignment (split loads)

Intel VTune, Broadwell E5-2620 v4, TTI space orders 4-8-12
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

• Cache optimizations (mostly L1 cache)
• Loop fission + elemental functions (register locality)
• Padding + data alignment (split loads)

Intel VTune, Broadwell E5-2620 v4, TTI space orders 4-8-12
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- Cache optimizations (mostly L1 cache)
  - Loop fission + elemental functions (register locality)
  - Padding + data alignment (split loads)
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- **Cache opts**
  - Cache optimizations (mostly L1 cache)
    - Loop fission + elemental functions (register locality)
    - Padding + data alignment (split loads)

- **DRAM opts**
  - DRAM optimizations: loop blocking
    - 1D, 2D, 3D supported (but no time loop)
    - Auto-tuning supported
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- Cache optimizations (mostly L1 cache)
  - Loop fission + elemental functions (register locality)
  - Padding + data alignment (split loads)

- DRAM optimizations: loop blocking
  - 1D, 2D, 3D supported (but no time loop)
  - Auto-tuning supported

- SIMD vectorization
  - Through compiler auto-vectorization
  - Why should I bother using intrinsics?
  - Various `#pragmas` introduced (e.g., ivdep, alignment, …)
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- Cache optimizations (mostly L1 cache)
  - Loop fission + elemental functions (register locality)
  - Padding + data alignment (split loads)

- DRAM optimizations: loop blocking
  - 1D, 2D, 3D supported (but no time loop)
  - Auto-tuning supported

- SIMD vectorization
  - Through compiler auto-vectorization
  - Why should I bother using intrinsics?
  - Various #pragma introduced (e.g., ivdep, alignment, …)

- OpenMP
  - #pragma collapse clause on the Xeon Phi
Devito Loop Engine

A sequence of compiler passes to introduce parallelism, SIMD vectorization and to improve data locality

- SIMD vectorization
  - Through compiler auto-vectorization
- Why should I bother using intrinsics?
  - Various `#pragma` s introduced (e.g., ivdep, alignment, …)
- DRAM optimizations: loop blocking
  - 1D, 2D, 3D supported (but no time loop)
  - Auto-tuning supported

Cache opts

- Cache optimizations (mostly L1 cache)
  - Loop fission + elemental functions (register locality)
  - Padding + data alignment (split loads)

DRAM opts

Parallelism

SIMD

Yet Another Stencil Kernel

Y*A*S*K

WIP
Acoustic on Broadwell

Acoustic[(512, 512, 512), TO=[2]], with varying <DSE,DLE>, on bdwb_ss
Acoustic on Broadwell

64% of attainable peak (best case)
TTI on Broadwell (8 threads, single socket)

Tti[(512, 512, 512), TO=[2]], with varying <DSE,DLE>, on bdwb_ss

Quite far from attainable peak!
TTI on Xeon Phi (64 threads, cache mode, quadrant)

Tti[(512, 512, 512), TO=[2]], with varying <DSE,DLE>, on ekf_1
TTI on Xeon Phi (64 threads, cache mode, quadrant)

It's extremely difficult (only a few examples in the literature) reaching such a high TTI space order.

Tti[(512, 512, 512), TO=[2]], with varying <DSE,DLE>, on ekf_1

Performance (GFlops/s)

Operational intensity (Flops/Byte)
Conclusions and resources

- Devito: an efficient and sustainable finite difference DSL
- Driven/inspired by real-world seismic imaging
- Interdisciplinary research effort
- Based on actual compiler technology

Useful links
- http://www.opesci.org
- https://github.com/opesci/devito