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Abstract

Modern seismic imaging techniques rely heavily on numerical wave equation
solvers, which are typically implemented using finite-difference methods. These
methods are memory-bound, making them well-suited for emerging computational
hardware optimised for reduced-precision arithmetic, such as GPUs and TPUs de-
signed for AI applications. However, directly solving wave equations in reduced-
precision formats such as FP16 or BF16 can introduce severe numerical instabilities
due to the restricted dynamic range and increased rounding errors. This study
presents a novel, generalisable scaling method that transforms wave equations to
fit within the representable range of reduced-precision formats, enabling stable and
accurate numerical solutions. Unlike previous approaches that require equation-
specific modifications, our method leverages dimensional analysis to redefine physi-
cal units, ensuring compatibility across a broad class of wave equations. We validate
this approach using Devito-based simulations of the acoustic, tilted transversely
isotropic (TTI), and elastic wave equations, demonstrating that scaled solutions
remain within 0.002%–1.7% of their unscaled counterparts. Further, we investigate
the impact of reduced precision on wave equation solvers using a 1D acoustic wave
test case, systematically lowering the bit depth using arbitrary-precision arithmetic.
Our results indicate that FP16 precision is viable for seismic modelling, while BF16
precision introduces excessive rounding error, and FP8 precision leads to numerical
instability. These findings suggest that appropriately scaled wave equations can be
solved efficiently on AI hardware using FP16, opening new possibilities for high-
performance seismic imaging and broader applications in computational physics.
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1 Introduction

1.1 Partial Differential Equations and Finite-Difference Meth-
ods

Many physical systems can be described mathematically through partial differential equa-
tions (PDEs). These equations govern various natural and engineered phenomena, in-
cluding fluid flow, modelled by the Navier-Stokes equations (Batchelor, 2000; Ershkov
et al., 2021); wave propagation, described by seismic, acoustic, and electromagnetic wave
equations (Aki and Richards, 2002; Kinsler et al., 2000; Griffiths, 2023); and financial
modelling, where the Black-Scholes equation (Black and Scholes, 1973; Ankudinova and
Ehrhardt, 2008) is used to price complex instruments. Efficiently solving PDEs is criti-
cal in numerous applications, enabling robust climate models, high-resolution subsurface
imaging, and stable financial systems. These equations often lack analytical solutions or
are too complex for real-world systems, requiring numerical methods.

Finite difference (FD) methods are widely used for numerically solving PDEs numeri-
cally due to their simplicity, efficiency, and low computational and memory requirements
(Liu and Sen, 2009) compared to alternatives such as spectral, finite element, and finite
volume methods (Virieux et al., 2011). FD methods replace continuous derivatives with
approximations derived from a discretised grid of the physical domain. For example, the
derivative of a function u(x) at a point xi can be approximated using the grid spacing
∆x and neighbouring points xi+1 and xi−1:

du

dx

∣∣∣∣
x=xi

≈ u(xi+1)− u(xi−1)

2∆x
(1)

Solving a PDE with an FD method replaces continuous derivatives with discretised
approximations (Equation 1) to compute derivatives and update solutions locally.

FD methods are commonly memory-bound, with performance limited by data trans-
fer rates rather than computational power (Micikevicius, 2009). This arises because FD
methods rely on accessing grid values in memory repeatedly to update solutions, with
simple arithmetic per data point. In contrast, a compute-bound system is constrained
by the processor’s speed, where performing calculations dominates the overall runtime
(Hennessy and Patterson, 2011). Meanwhile, in communication-bound systems (e.g.,
MPI domain decomposition (Gropp et al., 1999; Smith, 1997; Bader and Zhu, 2024)) the
primary bottleneck is the transfer of data between computational nodes, especially at
subdomain boundaries. Understanding the memory-bound nature of FD methods is cru-
cial as minimising memory requirements and optimising access patterns can substantially
improve efficiency (Micikevicius, 2009). For example, reducing the working set (actively
needed data) reduces memory bandwidth pressure, speeding up simulations (Micikevicius,
2009). This is particularly important in large-scale FD simulations, such as seismic mod-
elling, where grids span millions of points, making memory access the key performance
factor.

1.2 Seismic Modelling

Seismic modelling simulates seismic wave propagation through the Earth’s interior, with
key applications in seismic imaging, geohazard assessment, and resource exploration
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(Warner et al., 2013; Symes et al., 2008). Imaging techniques such as reverse-time mi-
gration (RTM) and full-waveform inversion (FWI) improve subsurface characterisation
by refining velocity models and enhancing resolution (Yilmaz, 2001; Virieux and Operto,
2009). RTM collapses wave energy to its source, improving geological interpretations
(Zhou et al., 2018), while FWI iteratively matches synthetic and observed wavefields to
better resolve subsurface structures (Semeniuk et al., 2017). These techniques are criti-
cal for locating hydrocarbons, assessing fault stability, and identifying CO2 storage sites
(Daramola et al., 2024; Hale, 2013; Papadopoulou et al., 2024).

Seismic wave propagation is governed by wave equations suited to different media.
The acoustic wave equation describes fluids (Kozaczka and Grelowska, 2017), while the
elastic wave equation captures both compressional and shear waves in solids (Virieux,
1986). In anisotropic media, where wave speeds vary by direction, anisotropic wave
equations are required (Fletcher et al., 2009). FD schemes solve these equations efficiently,
enabling high-resolution simulations for resource exploration, hazard assessment, and
carbon storage monitoring (Mufti and Fou, 1989; Aochi et al., 2013; Jiang, 2011).

FD methods are well-suited for seismic modelling due to their efficiency, scalability,
and compatibility with structured grids. Seismic surveys deploy sensors in regular grids
(Stone, 1994), aligning naturally with FD discretisation. Large-scale seismic simulations,
often spanning tens to hundreds of kilometres, require high-resolution grids to resolve
subsurface details (Komatitsch and Tromp, 2002). FD methods, leveraging local stencils,
efficiently handle such grids while maintaining computational feasibility.

1.3 Floating-Point Formats and Arithmetic

Floating-point representation is a method of encoding a broad range of real numbers
using a finite number of bits on a computer (IEEE, 2008; Goldberg, 1991). It serves
as the foundation for most scientific computing, enabling numerical calculations across
various domains.

Floating-point formats must balance two key concepts: dynamic range and preci-
sion.

• Dynamic range: The range of values (maximum and minimum) that can be
represented by a given floating-point format (IEEE, 2008).

• Precision: The number of distinct real numbers that can be represented within
the dynamic range of a floating-point format. (IEEE, 2008).

Floating-point numbers can exceed their representable range, causing overflow (resulting
in infinity) or underflow (truncating to zero). Lower precision formats, with fewer
exponent bits, are more prone to this (Goldberg, 1991). The trade-off between dynamic
range and precision is determined by the allocation of bits within the floating-point
format. Since the total number of bits is finite, increasing the dynamic range reduces the
precision, and vice versa. This balance is a fundamental design feature of any floating-
point format (IEEE, 2008). An example illustrating the impact of limited precision on
numerical accuracy is provided in Appendix A.

FP64 and FP32 are industry standards for scientific and engineering applications,
such as seismic modelling, due to their high accuracy and broad dynamic range (Fabien-
Ouellet, 2020). Lower precision formats, like FP16 and BF16, reduce memory usage and
computational cost, making them ideal for machine learning tasks and memory-bound
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Figure 1: Bit allocation for IEEE 754 standard FP64 (float64), FP32 (float32) and
FP16 (float16) formats. These are referred to as double, single and half precision
respectively (IEEE, 2008). BF16 (bfloat16), developed by Google Brain Cloud (2019),
is also shown. Floating-point numbers are represented using three components: the sign
bit (blue), which determines the number’s positivity or negativity; the exponent (green),
which controls the dynamic range; and the mantissa (red), which defines the precision of
the number. Adapted from Haridas et al. (2022) and IEEE (2008).

computations (Carilli and Casper, 2021). See Figure 1 for the composition of common
floating-point formats. Emerging formats like FP8 push this trade-off further, offering
even lower precision to improve efficiency in deep learning applications (Micikevicius et al.,
2022). FP8’s limited precision restricts its use in accuracy-critical numerical methods,
whereas FP64 and FP32 remain standard for high-precision applications like seismic
simulations. In contrast, FP16, BF16, and FP8 are optimised for performance-critical,
memory-constrained tasks such as machine learning.

1.4 Modern Hardware Development

Modern computational hardware is increasingly being developed to accommodate appli-
cations in artificial intelligence (AI) (Mojahidul Ahsan et al., 2024; Sentieys and Menard,
2022). AI applications are inherently resilient to noise and minor inaccuracies (Mo-
jahidul Ahsan et al., 2024), allowing them to function effectively even with reduced-
precision arithmetic. Exploiting this property, AI accelerators often use reduced-precision
formats, trading a small degree of accuracy for substantial improvements in computational
efficiency and memory usage (Mojahidul Ahsan et al., 2024).

CPUs, GPUs and TPUs (Armoni, 2024; Rodriguez and Bardos, 2024) typically sup-
port FP16 and BF16 floating-point formats in their architecture allowing for mixed pre-
cision arithmetic during computations (Sentieys and Menard, 2022). By reducing the
number of bits used to represent numbers, lower precision formats significantly decrease
the memory footprint of computations, enabling larger datasets and models to fit within
fast-access memory.

FD methods are highly parallelisable due to their independent grid-based calculations,
making them well-suited to GPUs, which optimise floating-point operations through ded-
icated processing cores like CUDA or Tensor Cores (Sun et al., 2022). Additionally, GPUs
offer higher memory bandwidth, reducing bottlenecks in memory-bound applications,
and enabling throughput gains of up to 12x compared to CPUs (Adams et al., 2007).
The computational efficiency and memory advantages of modern hardware optimised for
reduced-precision formats present significant opportunities for seismic modelling. While
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traditionally reliant on FP64 or FP32 for accuracy, seismic simulations that leverage
reduced-precision formats could exploit the high throughput and memory bandwidth of
AI hardware, enabling faster and more efficient large-scale FD computations.

1.5 Reduced-Precision in Seismic Modelling

Lower precision floating-point formats present two main challenges in seismic modelling:

• Narrow dynamic range: Shorter exponents increase susceptibility to overflow
and underflow.

• Rounding errors: Reduced mantissa precision leads to higher rounding errors
(IEEE, 2008).

These issues necessitate modifications to ensure numerical stability and accuracy
(Gao, 2023).

Despite these challenges, reduced precision has been successfully applied in seismic
modelling. Fabien-Ouellet (2020) implemented FP16 arithmetic in the 2D elastic wave
equation (P-SV system), while Wan et al. (2024) extended this to the 3D elastic wave
equation on curvilinear grids. Both studies achieved 1.7–2× speedups while maintaining
numerical stability. Furthermore, Fabien-Ouellet (2020) showed that FP16 computations
did not degrade FWI or RTM, demonstrating viability in imaging workflows.

To ensure values remained within FP16’s dynamic range, Fabien-Ouellet (2020) ap-
plied logarithmic scaling to the right-hand side of the update equation. Wan et al. (2024)
further introduced an additional scaling factor to maintain consistent orders of magnitude
across variables, reducing rounding errors and improving numerical stability.

While reduced precision in seismic modelling has shown promise, existing approaches
remain limited in scalability and generalisability. Fabien-Ouellet (2020) and Wan et al.
(2024) tailored their methods to coupled first-order systems, relying on scaling parameters
linked to specific wave equation properties. This dependence makes extension to broader
PDEs challenging. Logarithmic scaling, though effective, lacks physical intuition for sim-
pler wave systems. Additionally, Wan et al. (2024)’s extra scaling factor requires careful
calibration to maintain numerical consistency, limiting automation and adaptability in
large-scale simulations.

Building on these works, it is of interest to develop a method that generalises across
a wider range of wave equations and mitigates reduced precision limitations without
requiring extensive preconditioning or domain-specific adjustments.

1.6 Project Aims

This project aims to investigate approaches for solving wave equations in reduced preci-
sion and analyse the resulting impacts through two phases of investigation:

Scaling Wave Equations to Reduced Precision Formats

• What: Develop a method to scale wave equations such that their numerical
representation fits within the dynamic range of reduced-precision floating-point
formats.
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• Why: Direct computation of wave equations in reduced precision often leads
to errors due to overflow or underflow. Scaling ensures stability and accuracy
by aligning values in the update equation to the representable range of the
chosen floating-point format.

• How: We develop a methodology based on transforming the physical units of
the system, independent of specific behaviours or inherent characteristics. This
approach is validated by implementing scaled and unscaled cases of common
equations in seismic modelling using the Devito DSL.

Assessing the Impact of Reduced Precision

• What: After scaling to the dynamic range of lower precision floating-point
formats, evaluate the behaviour of wave equations as precision is incrementally
reduced, focusing on solution accuracy and numerical stability.

• Why: Evaluating the limits of reduced precision is essential to determine the
suitability of reduced precision formats for seismic modelling applications.

• How: We develop a 1D acoustic wave equation test case as a benchmark
and compare the analytical solution to a numerical solution calculated via
FD. Using the MPMath library in Python, we simulate reduced precision and
quantify the effects on solution accuracy and error propagation across varying
bit depths.

2 Introduction to Method

We first address the challenge of scaling wave equations for reduced-precision formats,
aiming for a method applicable to all wave equations and PDEs. To validate this, we
apply it to three seismic modelling equations:

• Acoustic Wave Equation: The acoustic wave equation describes the propaga-
tion of compressional waves, playing a central role in exploration seismology and
underpinning numerous seismic processing techniques (Sotelo et al., 2021; Kosloff
and Baysal, 1983).

• Tilted Transversely Isotropic Wave Equation: The tilted transversely isotropic
(TTI) wave equation, as outlined in (Fletcher et al., 2009), approximates anisotropic
elastic wave propagation without shear phases. This equation is particularly rele-
vant in subsurface environments, such as those with tilted, layered geological for-
mations like shales (Thomsen, 1986).

• Elastic Wave Equation: The elastic wave equation describes the propagation of
both compressional and shear waves in solid media. These equations are fundamen-
tal to the modelling of the entire seismic wavefield and the development of wave
propagation models for earthquake dynamics (Virieux, 1986; Madariaga, 1976).

We use the Python package Devito (Louboutin et al., 2019; Luporini et al., 2020) to
implement both unscaled and scaled versions of the equations outlined above, compar-
ing the resulting wavefields quantitatively and qualitatively. Devito is a domain-specific
language that facilitates specification of FD models using high-level symbolic Python ob-
jects. These objects define FD operators, which are then translated into highly optimised
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C++ code at runtime through a multi-stage compilation process. For each implementa-
tion, we use a 2 km× 2 km grid, discretised into 201 points in each direction. We inject a
Ricker wavelet source (Ricker, 1953; Hao et al., 2024) with a frequency of 30Hz into the
centre of the grid, and set the simulation length at 0.25s

After validating the scaling method for adapting wave equations to the dynamic range
of lower precision floating-point formats, we investigate the impact of reduced precision on
the accuracy of wave equation solutions. A test case is devised using the 1D acoustic wave
equation, with a numerical solver implemented in Python using a FD scheme. To simulate
an incremental reduction in precision, from FP32 equivalent to FP8 equivalent, we use
the Python package MPMath (mpmath development team, 2023). MPMath enables
arbitrary-precision arithmetic by specifying significant digits and representing numbers
as extended precision data types. By gradually reducing mantissa bits, we assess rounding
and truncation effects, evaluating reduced-precision formats for seismic modelling.

3 Scaling Wave Equations to Dynamic Range

3.1 Introduction to Scaling

Wave equations often involve physical parameters that span large and small magnitudes,
leading to overflow or underflow issues when using reduced precision formats. To illustrate
this, consider the 1D acoustic wave equation:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
+ s(x, t), (2)

where u(x, t) is the displacement field, c is the wave speed, s(x, t) is a source term, x
is the spatial coordinate, and t is time.

The FD stencil for Equation 2 using second-order approximations is:

un+1
i − 2un

i + un−1
i

∆t2
= c2

un
i+1 − 2un

i + un
i−1

∆x2
+ s(x, t), (3)

where un
i represents the displacement at spatial index i and time step n, ∆t is the

time step size, ∆x is the spatial step size, and c is the wave speed. Rearranging for un+1
i ,

the update equation becomes:

un+1
i = 2un

i − un−1
i +

c2∆t2

∆x2

(
un
i+1 − 2un

i + un
i−1

)
+∆t2s(x, t). (4)

For a reasonable wave speed of c = 3000m/s, squaring this as described in Equa-
tion 4 results in 9, 000, 000m/s, far exceeding 65, 504, the maximum representable value
of FP16. Similarly, a time step size of ∆t = 0.003 s squared yields 0.000009 s, which is
significantly smaller than 0.000061, the minimum representable value of FP16. Naively
solving Equation 2 numerically using Equation 4 in half precision would lead to overflows
and underflows at every time step.

To address these challenges, we employ a dimensional analysis approach akin to se-
lecting alternative units, such as km/s instead of m/s. The goal is to define units so
that the physical parameters of the problem are approximately ∼ 1, avoiding the risks
of overflow and underflow. Unlike the methods proposed by Fabien-Ouellet (2020) and
Wan et al. (2024), our approach works directly with the problem’s physical units rather
than introducing complex mathematical transformations.
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By focusing on base physical units, this method can be extended to a wide range
of computational physics problems involving measurable physical parameters. It avoids
dependence on specific characteristics of an equation, such as coupling, making it broadly
applicable to any problem governed by physical units.
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3.2 General Methodology

We propose a method for defining new units for wave equations as shown in Figure 2.

Define new spatial unit
using grid spacing ∆x

Apply spatial unit
to all parameters

Calculate ∆t from CFL:
V∆t
∆x

= C, C = 1

Define normalising
time unit using ∆t

Apply time unit
to all parameters

Figure 2: Flowchart of the scaling process. The Courant-Friedrichs-Lewy (CFL) condition
(Courant et al., 1967; De Moura and Kubrusly, 2013) ensures numerical stability in finite-
difference time stepping. Here, we determine ∆t using the CFL condition with Courant
number C = 1, ensuring V∆t

∆x
= 1. See Appendix B for a detailed derivation of the

method. To illustrate this general method in practice, consider an area discretised with
a grid spacing ∆x of 10m and a constant velocity model of 3000m/s throughout. The
spatial unit is redefined so that the new grid spacing becomes 1 (10m), and the maximum
velocity V is rescaled accordingly to 300 (10m/s). The time step is determined using this
velocity and grid spacing in the CFL condition as described in Figure 2, yielding a value
of 1

300
s. This is subsequently used to define a new normalising time unit of 1

300
s and

thus our time step ∆t becomes 1( 1
300

s). Applying this time unit to all time-dependent
parameters ensures that the normalised maximum velocity becomes 1 (10m/ 1

300
s). The

frequency of 30Hz is adjusted to 0.1Hz, and the total simulation time is scaled up by a
factor of 300. By expressing physical parameters in this rescaled form, operations such
as squaring a velocity or time step remain within the numerical dynamic range.

3.3 Application to Isotropic Acoustic Wave Equation and Re-
sults

The 2D acoustic wave equation is given by:

∂2P (x, z, t)

∂t2
= c2(

∂2P (x, z, t)

∂x2
+

∂2P (x, z, t)

∂z2
) + s(x, z, t), (5)

where P (x, z, t) is the pressure field, c is the wave speed, s(x, z, t) is a source term, x and
z are spatial coordinates and t is time.
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Discretising the temporal and spatial derivatives in Equation 5 with a 2nd-order FD
scheme gives:

P n+1
i,j − 2P n

i,j + P n−1
i,j

∆t2
= c2

(
P n
i+1,j − 2P n

i,j + P n
i−1,j

∆x2
+

P n
i,j+1 − 2P n

i,j + P n
i,j−1

∆z2

)
+ s(x, z, t)

(6)
To reach our final update equation, we rearrange Equation 6 for P n+1

i,j . This yields an
expression for the pressure at the next time step given by:

P n+1
i,j = 2P n

i,j−P n−1
i,j +∆t2c2(

P n
i+1,j − 2P n

i,j + P n
i−1,j

∆x2
+
P n
i,j+1 − 2P n

i,j + P n
i,j−1

∆z2
)+∆t2s(x, z, t).

(7)
We use Equation 7 to solve Equation 5 for the pressure field P (x, z, t) using a fourth-

order discretisation scheme in Devito. With the change of units, the ∆t2s(x, z, t) term is
normalised to 1, as the peak amplitude of our Ricker wavelet is 1. We implement both a
constant and variable velocity case, with the variable model used shown in Appendix C.
The results of the scaling procedure are presented in Figure 3, Figure 4, and Table 1.
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Figure 3: Plot (a) shows the baseline unscaled pressure field given by Equation 7 for
a constant velocity model with Vmax = 3000m/s. Plot (b) shows the pressure field
produced by Equation 7 with our scaling method applied, note that (a) and (b) are both
visually and numerically indistinguishable. Plot (c) shows the difference between the two
wavefields at the end of the simulation.
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Figure 4: Plot (a) shows the baseline unscaled pressure field given by Equation 7 for a
layered velocity model as shown in Appendix C. Plot (b) shows the scaled pressure field
for the same velocity model, note that again the fields are both visually and numerically
indistinguishable. Plot (c) shows the difference between the two wavefields at the end of
the simulation.
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Velocity Case % Change in Max Abs % Change in Range

Constant Velocity −5.276 734× 10−4 1.826 799× 10−3

Variable Velocity −1.291 285× 10−4 4.442 672× 10−4

Table 1: We calculate percentage changes in the maximum absolute value and range of
values of the acoustic pressure field to quantitatively evaluate our scaling method. The
constant velocity row shows the percentage changes observed in Figure 3, and the variable
velocity row displays the results observed in Figure 4. Percentage changes are generally
on the order of 10−3 to 10−4, meaning that the first 3 to 4 decimal digits of the unscaled
and scaled maximum absolute and range of values remained the same.

3.4 Application to Tilted Transversely Isotropic Wave Equation
and Results

Fletcher et al. (2009) use a P-SV TTI dispersion relation to derive a coupled system of
equations to describe wave propagation an anisotropic medium:

∂2P

∂t2
= v2pxH2P + αv2pzH1Q+ v2szH1(P − αQ),

∂2Q

∂t2
=

v2pn
α

H2P + v2pzH1Q− v2szH2

(
1

α
P −Q

)
,

(8)

where P is the pressure field, Q is an auxillary field, vpz is the P wave velocity in
the direction normal to the symmetry plane, vpn is the P-wave normal moveout (NMO)
velocity relative to the symmetry plane given by vpn = vpz

√
1 + 2δ, vpx is the P-wave

velocity in the symmetry plane given by vpx = vpz
√
1 + 2ϵ, vsz is the SV velocity normal

to the symmetry plane, δ and ϵ are dimensionless anisotropy parameters defined by
Thomsen (1986), α is a non-zero scalar and H1 and H2 are derivative operators given by:

H1 = sin2 θ
∂2

∂x2
+ cos2 θ

∂2

∂z2
+ sin 2θ

∂2

∂x∂z
,

H2 =
∂2

∂x2
+

∂2

∂z2
−H1.

(9)

Due to the complexity of Equation 8, we leverage the capabilities of Devito to define
the update equations for the pressure and auxillary fields as:
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P n+1
i,j = (∆t)2

(
2P n

i,j − P n−1
i,j

∆t2

+ 7.5
P n
i+1,j − 2P n

i,j + P n
i−1,j

∆x2

+ 7.5
P n
i,j+1 − 2P n

i,j + P n
i,j−1

∆z2

+ 3.66
Qn

i+1,j − 2Qn
i,j +Qn

i−1,j

∆x2

+ 3.66
Qn

i,j+1 − 2Qn
i,j +Qn

i,j−1

∆z2

− 11.64
P n
i+1,j+1 − P n

i+1,j−1 − P n
i−1,j+1 + P n

i−1,j−1

4∆x∆z

+ 7.32
Qn

i+1,j+1 −Qn
i+1,j−1 −Qn

i−1,j+1 +Qn
i−1,j−1

4∆x∆z

)
,

(10)

Qn+1
i,j = (∆t)2

(
2Qn

i,j −Qn−1
i,j

∆t2

+ 4.56
P n
i+1,j − 2P n

i,j + P n
i−1,j

∆x2

+ 4.56
P n
i,j+1 − 2P n

i,j + P n
i,j−1

∆z2

+ 5.34
Qn

i+1,j − 2Qn
i,j +Qn

i−1,j

∆x2

+ 5.34
Qn

i,j+1 − 2Qn
i,j +Qn

i,j−1

∆z2

− 9.12
P n
i+1,j+1 − P n

i+1,j−1 − P n
i−1,j+1 + P n

i−1,j−1

4∆x∆z

+ 7.32
Qn

i+1,j+1 −Qn
i+1,j−1 −Qn

i−1,j+1 +Qn
i−1,j−1

4∆x∆z

)
.

(11)

The system described in Equation 8 is solved using Equation 10 and Equation 11 using
a eighth-order discretisation scheme. The results of the scaling procedure are presented
in Figure 5, Figure 6, and Table 2.

Parameter Case % Change in Max Abs % Change in Range

Constant Parameter 1.850 217× 10−2 1.695 510
Variable Parameter −1.073 405× 10−4 7.135 709× 10−4

Table 2: Percentage changes in the maximum absolute value and range of values for the
pressure field as solved for by Equation 10.
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Figure 5: Plot (a) shows the pressure field as found by Equation 10 using unscaled
parameters. Plot (b) shows the scaled pressure field, and Plot (c) shows the difference
between the two. For this constant velocity case, we use parameters Vp = 3000m/s,
ϵ = 0.24, δ = 0.1, α = 1 and θ = π

4
as outlined in Fletcher et al. (2009).
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Figure 6: Plot (a) shows the pressure field as found by Equation 10 using an unscaled
variable parameter model. Plot (b) shows the scaled pressure field through the same
variable model, and Plot (c) shows the difference between the two. We hold α constant
at 1 and implement the variable parameter model shown in Appendix C.

3.5 Application to Elastic Wave Equation and Results

Virieux (1986) outlines a velocity-stress formulation of the elastic wave equation to model
P-SV wave propagation as follows:

∂vx
∂t

= b

(
∂τxx
∂x

+
∂τxz
∂z

)
,

∂vz
∂t

= b

(
∂τxz
∂x

+
∂τzz
∂z

)
,

∂τxx
∂t

= (λ+ 2µ)
∂vx
∂x

+ λ
∂vz
∂z

,

∂τzz
∂t

= (λ+ 2µ)
∂vz
∂z

+ λ
∂vx
∂x

,

∂τxz
∂t

= µ

(
∂vx
∂z

+
∂vz
∂x

)
,

(12)

Where (vx, vz) is the velocity vector, (τxx, τzz, τxz) are components of the stress
tensor, b is the buoyancy defined as 1

ρ
where ρ is density, and λ and µ are the Lame

parameters (Aki and Richards, 2002). We can parameterise the Lame coefficients using
the definitions of P and S wave velocity (Aki and Richards, 2002) leading to a new set of
equations as follows:
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∂vx
∂t

=
1

ρ

(
∂τxx
∂x

+
∂τxz
∂z

)
,

∂vz
∂t

=
1

ρ

(
∂τxz
∂x

+
∂τzz
∂z

)
,

∂τxx
∂t

= V 2
p ρ

∂vx
∂x

+ ρ
(
V 2
p − 2V 2

s

) ∂vz
∂z

,

∂τzz
∂t

= V 2
p ρ

∂vz
∂z

+ ρ
(
V 2
p − 2V 2

s

) ∂vx
∂x

,

∂τxz
∂t

= V 2
s ρ

(
∂vx
∂z

+
∂vz
∂x

)
,

(13)

where Vp is the P wave velocity and Vs is the S wave velocity. Discretising and re-arranging
the system described in Equation 13 leads to a set of update equations:

vn+1
x(i,j) = vn−1

x(i,j) +
2∆t

ρ

(
τnxx(i+1,j) − τnxx(i−1,j)

2∆x
+

τnxz(i,j+1) − τnxz(i,j−1)

2∆z

)
,

vn+1
z(i,j) = vn−1

z(i,j) +
2∆t

ρ

(
τnxz(i+1,j) − τnxz(i−1,j)

2∆x
+

τnzz(i,j+1) − τnzz(i,j−1)

2∆z

)
,

τn+1
xx(i,j) = τn−1

xx(i,j) + 2∆t

(
V 2
p ρ(

vnx(i+1,j) − vnx(i−1,j)

2∆x
) + ρ(V 2

p − V 2
s )(

vnz(i,j+1) − vnz(i,j−1)

2∆z
)

)
,

τn+1
zz(i,j) = τn−1

zz(i,j) + 2∆t

(
V 2
p ρ(

vnz(i,j+1) − vnz(i,j−1)

2∆z
) + ρ(V 2

p − V 2
s )(

vnx(i+1,j) − vnx(i−1,j)

2∆x
)

)
,

τn+1
xz(i,j) = τn−1

xz(i,j) + 2∆tV 2
s ρ

(
vnx(i,j+1) − vnx(i,j−1)

2∆z
+

vnz(i+1,j) − vnz(i−1,j)

2∆x

)
.

(14)
We use a fourth-order discretisation scheme to solve Equation 14 using Devito, testing

both constant and variable models for Vp, Vs and ρ.

Parameter Case Field % Change in Max Abs % Change in Range

Constant

vx 6.200 037× 102 6.200 037× 102

vz 6.200 009 8× 102 6.200 009 8× 102

τxx 1.682 920 1× 10−4 3.099 073 6× 10−4

τzz 1.234 141 6× 10−4 2.893 035 6× 10−4

τxz 1.590 241 0× 10−4 2.697 730 2× 10−4

Variable

vx 1.099 998× 103 1.099 998× 103

vz 1.099 997× 103 1.099 997× 103

τxx −1.734 003× 10−4 3.318 421× 10−4

τzz −2.488 594× 10−4 3.694 171× 10−4

τxz −1.923 861× 10−4 3.773 728× 10−4

Table 3: Percentage changes in the maximum absolute value and range of values for
velocity and stress tensor components for constant and variable parameter fields.

The results of the scaling process are presented in Figure 7, Figure 8 and Table 3.
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Figure 7: Normal and shear stress fields, found using Equation 14 through a constant
parameter model, with Vp = 3000m/s, Vs = 1500m/s and ρ = 2400kg/m3. The top row
shows the unscaled field for normal stress τxx in Plot (a), the scaled field in Plot (b) and
the difference between the two in Plot (c). Plot (d) shows the unscaled field for normal
stress τzz, Plot (e) shows the scaled field, and Plot (f) shows the difference. The bottom
row displays the results of scaling on the shear stress τxz. Plots (g), (h) and (i) show
the unscaled stress, scaled stress and difference respectively.
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Figure 8: Normal and shear stress fields, found using Equation 14 through a variable
parameter model detailed in Appendix C. The top row shows the unscaled field for
normal stress τxx in Plot (a), the scaled field in Plot (b) and the difference between
the two in Plot (c). Plot (d) shows the unscaled field for normal stress τzz, Plot (e)
shows the scaled field, and Plot (f) shows the difference. The bottom row displays the
results of scaling on the shear stress τxz. Plots (g), (h) and (i) show the unscaled stress,
scaled stress and difference respectively.
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3.6 Discussion of Scaling and Merits of Approach

Our method successfully scales wave equations to fit within the dynamic range of lower
precision formats. The resulting wavefields are visually indistinguishable from their un-
scaled counterparts. In the best case, the maximum absolute value of the scaled wavefield
differs by approximately −5 × 10−5%. Given FP32’s 7 decimal digits of precision, the
scaled and unscaled maximum absolute values match to six decimal places, diverging
only in the seventh. For FP16 ( 4 decimal digits) and BF16 ( 2 decimal digits), this
difference is numerically insignificant. In general, the scaled update equation produces
values differing from the unscaled field by at most 10−2% to 10−4%, ensuring numerical
equivalence within the precision limits of FP16 and BF16.

A key result of the scaling process is its robustness across a range of physical pa-
rameters. We demonstrate its effectiveness for equations involving velocities, densities,
angles, and anisotropic factors, highlighting potential applications beyond seismic mod-
elling. While this work focuses on seismic wave equations, many of these parameters
also appear in other PDEs. For example, velocity and density are central to the Navier-
Stokes equations in fluid dynamics, the heat equation in convection modelling (Bluman
and Cole, 1969; Recktenwald, 2004), and the Vlasov equation in plasma physics (Vlasov,
1968; Cheng and Knorr, 1976). If the method holds for these parameters in wave equa-
tions, it could extend to other linear PDEs. Unlike past approaches (Fabien-Ouellet, 2020;
Wan et al., 2024) tailored to specific equations, this generalised method provides a scal-
able framework applicable across multiple domains, enhancing computational efficiency
across disciplines.

Our method is shown to be effective for stress and pressure fields, while the velocity
field undergoes a consistent change of units as part of the scaling process. The only case
in which the scaled update equation produces a field that is materially different from
the unscaled case is for the particle velocity fields in Virieux (1986)’s elastic wave equa-
tion formulation. While the velocity fields appear visually indistinguishable, numerical
analysis reveals significantly higher values in the scaled case. This discrepancy arises
because velocity is explicitly coupled with time, meaning that scaling the unit of time
in the simulation directly scales the velocity field. Importantly, this transformation is
consistent and systematically brings the velocity field closer to unity, making it a direct
consequence of our method rather than a flaw. This has broader implications for other
equations where parameters are coupled with time. For instance, similar scaling effects
would be expected in other velocity-stress formulations of wave equations, as well as in
PDEs that solve for velocity fields beyond seismic modelling.

Our method has key limitations affecting its general applicability to computational
physics. Since it operates on physical units, it does not modify dimensionless parameters.
In applying it to the TTI system of Fletcher et al. (2009), the anisotropic parameters δ and
ϵ remain unchanged. For our case, with δ ∼ 0.1 and ϵ ∼ 0.24, this is not problematic,
as they are constant, not exponentiated, and well within the dynamic range of lower
precision formats. However, for larger or smaller dimensionless values, additional steps
may be required to prevent overflow or underflow. Certain visco-acoustic and visco-elastic
wave equations incorporate the quality factor Qp (Li et al., 2017; Yang and Zhu, 2018),
which can range from 10 to 1000 (de Castro Nunes et al., 2011; Dobrynina et al., 2011).
If unscaled, extreme values may compromise numerical stability. For instance, Li et al.
(2017) describe a visco-elastic wave equation with a 1

Q2
p
term, where Qp > 256 causes Q2

p

to exceed FP16’s maximum representable value.
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We neglect explicit scaling of angles, such as those defining tilt in TTI systems
(Fletcher et al., 2009). While trigonometric functions of these angles remain unchanged,
they are typically computed outside the main time loop in FD solvers. This enables
mixed-precision arithmetic (Micikevicius et al., 2017; Baboulin et al., 2009) to retain
high precision for precomputed values while using reduced precision in time stepping,
reducing computational overhead.

Another limitation of our method is its reliance on the linearity of the scaling process.
A function is linear if it satisfies additivity, f(x1 + x2) = f(x1) + f(x2), and homogene-
ity, f(kx) = kf(x) for a scalar k. By homogeneity, scaling a linear PDE by k scales
its solution by the same factor, provided all terms—including field values and forcing
terms—are scaled consistently. A unit transformation (e.g., 2 kPa → 2000 Pa) preserves
the equation’s structure, whereas arbitrarily scaling values (e.g., 2 kPa → 4 kPa) alters
system behaviour. Additionally, achieving uniform scaling across all variables may not
always be feasible, particularly in equations with multiple coupled quantities. Non-linear
PDEs, which do not satisfy homogeneity, exhibit solutions that do not scale proportion-
ally, limiting the direct applicability of our method to such cases.

4 Reduced-Precision Solutions

4.1 Introduction to Reduced-Precision Solutions

The number of mantissa bits a floating-point value has manifests itself in the number of
significant decimal digits that values can be quoted to. Refer to Figure 1 for the allocation
of bits across each component of the common floating-point formats.

Format Mantissa Bits Decimal Precision
FP64 52 15 digits
FP32 23 7 digits
FP16 10 4 digits
BF16 7 2–3 digits
FP8 4 1 digit

Table 4: Mantissa bits and approximate decimal precision of common floating-point
formats.

Table 4 summarises the mantissa bits and corresponding approximate precision for
common floating-point formats. The reduction in precision between floating-point types
has implications for the accumulation of rounding error in computations. For example,
consider the accumulation of rounding error when summing N = 1, 000, 000 values, each
equal to 0.123456789:

True Value: The exact sum, without rounding, is:

True Sum = N × 0.123456789 = 1, 000, 000× 0.123456789 = 123, 456.789

FP32 Representation: The value 0.123456789 is stored as 0.1234568 in FP32, rounded
to 7 significant digits. The total sum is:

SumFP32 = N × 0.1234568 = 1, 000, 000× 0.1234568 = 123, 456.8
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The rounding error is:

ErrorFP32 = SumFP32 − True Sum = 123, 456.8− 123, 456.789 = 0.011

FP16 Representation: The value 0.123456789 is stored as 0.1235 in FP16, rounded
to 4 significant digits. The total sum is:

SumFP16 = N × 0.1235 = 1, 000, 000× 0.1235 = 123, 500

The rounding error is:

ErrorFP16 = SumFP16 − True Sum = 123, 500− 123, 456.789 = 43.211

Implications: In FP32, the accumulated rounding error is minimal (0.011), whereas in
FP16, the reduced precision introduces a significantly larger error (43.211). For a format
like BF16, which offers only 2–3 decimal digits of precision, the rounding error would
be even greater. While reduced precision formats provide substantial computational
advantages, such as improved efficiency and lower memory requirements, they do so at the
expense of increased numerical error. Understanding this trade-off is crucial for evaluating
the suitability of formats like FP16 and BF16 in scientific computing applications.

4.2 Test Problem

To investigate the effects of reduced precision on wave equation solutions, we devise a
test case using the 1D acoustic wave equation:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
. (15)

This is similar to Equation 2, but the source term is omitted in Equation 15 as an initial
condition for displacement is implemented instead.

We define the test case as follows:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
, x ∈ [−L,L], t > 0,

where u(x, t) is the displacement field, and c is the wave speed.

Boundary Conditions: The solution satisfies homogeneous Dirichlet boundary con-
ditions:

u(−L, t) = 0, u(L, t) = 0, t > 0.

Initial Conditions: The initial displacement and velocity conditions are:

u(x, 0) = sin

(
2πx

L

)
, ut(x, 0) = 0, x ∈ [−L,L].

The solution is derived using the method of separation of variables. Assuming u(x, t) =
X(x)T (t), the wave equation separates into two ordinary differential equations (ODEs):

T ′′(t)

c2T (t)
=

X ′′(x)

X(x)
= −k2,
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where k is a separation constant.
The spatial ODE is:

X ′′(x) + k2X(x) = 0.

With the boundary conditions u(−L, t) = 0 and u(L, t) = 0, the solution is:

Xn(x) = sin
(nπx

L

)
, k =

nπ

L
, n = 1, 2, 3, . . .

The temporal ODE is:

T ′′(t) +
(nπc

L

)2
T (t) = 0.

The general solution is:

Tn(t) = Cn cos
(nπc

L
t
)
+Dn sin

(nπc
L

t
)
,

where Cn and Dn are constants determined by the initial conditions.
Combining the spatial and temporal solutions, the general solution is:

u(x, t) =
∞∑
n=1

[
Cn cos

(nπc
L

t
)
+Dn sin

(nπc
L

t
)]

sin
(nπx

L

)
.

The initial conditions are used to determine the coefficients Cn and Dn:

• From u(x, 0) = sin
(
2πx
L

)
, we find Cn = 1 for n = 2, and Cn = 0 for n ̸= 2.

• From ut(x, 0) = 0, we find Dn = 0 for all n.

Thus, the analytical solution is:

u(x, t) = cos

(
2πct

L

)
sin

(
2πx

L

)
. (16)

The analytical solution in Equation 16 describes a sinusoidal standing wave propagat-
ing along the x-axis with a speed cm/s. To simplify verification of the results, we select
c and L such that the period of the solution is 1 s. Specifically, we set the half-length
L = 1000m and the wave speed c = 1000m/s to achieve this.

4.3 Implementation

To solve Equation 15 numerically, we implement a forward-Euler (Biswas et al., 2013;
Estep, 2002) leapfrog time-stepping scheme. Using a 2nd-order central difference approx-
imation, we discretise the equation as:

un+1
i − 2un

i + un−1
i

∆t2
= c2

un
i+1 − 2un

i + un
i−1

∆x2
, (17)

where un
i is the numerical solution for displacement u(x, t) at time index n and spatial

index i, with time step ∆t and grid spacing ∆x. Rearranging for un+1
i yields:

un+1
i = 2un

i − un−1
i +

c2∆t2

∆x2

(
un
i+1 − 2un

i + un
i−1

)
. (18)
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We implement a loop in Python to solve Equation 18 for a given simulation length using
the MPMath package to simulate varying precision levels.

MPMath facilitates arbitrary precision arithmetic, allowing control over mantissa bits
to simulate reduced precision. In our implementation, all numerical operations updating
the solution use MPMath arithmetic, with parameters ∆t, ∆x, and c cast as MPMath
objects before simulation. This prevents overflow and underflow by using unlimited ex-
ponent bits, ensuring values remain within dynamic range.

We solve both scaled and unscaled cases of the 1D acoustic wave problem, comparing
solutions to test the scaling method and identify discrepancies as precision decreases.
Precision is reduced incrementally from 23 mantissa bits (FP32 equivalent) to 4 bits
(FP8 equivalent). At each bit depth, we record the displacement field after 5 and 10
periods, comparing it to the analytical solution, Equation 16. Additionally, we track
error over time and compute the Fourier transform of the wavefield at the beginning and
end of the simulation to analyse frequency content.

4.4 Results

One key result of implementing both a scaled and unscaled case of our test problem was
that the results for both were indistinguishable at every bit depth. In this section, we
will only show the results of the unscaled case as this offers the purest insight into the
behaviour of our test as precision is reduced.

We show numerical solutions, error through time and frequency spectra for levels of
precision equivalent to FP32, FP16, BF16 and FP8, based on the number of mantissa
bits as described in Table 4.
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4.4.1 Solutions

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(a)
t = 0 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(b)
t = 5 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(c)
t = 10 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(d)
t = 0 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(e)
t = 5 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(f)
t = 10 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(g)
t = 0 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.0

0.5

0.0

0.5

1.0

u(
x,

 t)

(h)
t = 5 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.0

0.5

0.0

0.5

1.0

u(
x,

 t)

(i)
t = 10 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

u(
x,

 t)

(j)
t = 0 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

15

10

5

0

5

u(
x,

 t)

(k)
t = 5 s

Analytical
Numerical

1000 750 500 250 0 250 500 750 1000
Position (x) [m]

20

15

10

5

0

5

10

15

u(
x,

 t)

(l)
t = 10 s

Analytical
Numerical

Figure 9: We show the numerical solution for our test case found using Equation 18,
plotted with our analytical solution given by Equation 16. In Plots (a), (b) and (c), we
show the numerical solution for 23 mantissa bits (FP32 equivalent). Note that at 23 bits,
our numerical solution is indistinguishable to the analytical solution. In Plots (d), (e)
and (f), we show the numerical solution for 10 mantissa bits (FP16 equivalent). Some
distortion is first visible in the peaks and troughs of the wave after 10 periods (t = 10s
). In Plots (g), (h) and (i), we show the numerical solution for 7 mantissa bits (BF16
equivalent). We observe signficant distortion in the wavefield here with significant high
frequency artefacts visible after 5 and 10 periods. In Plots (j), (k) and (l), we show the
numerical solution for 4 mantissa bits (FP8 equivalent). At this level of precision, the
solution is unstable, reaching values well outside the range of ±1 where sinsuoidal

functions are bound.
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4.4.2 Error Through Time
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Figure 10: Maximum absolute error through time for 23 mantissa bits (FP32 equivalent).
Note here that the profile is periodic, with the error being cancelled over time and stable.
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Figure 11: Maximum absolute error through time for 10 mantissa bits (FP16 equivalent).
At this point, a zero-offset in the error is clear, with the profile behaving as a sinusoid with
an added constant component that introduces a non-zero amplitude at zero frequency.
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Figure 12: Maximum absolute error through time for 7 mantissa bits (BF16 equivalent).
The profile has lost the periodicity that was still visible at 10 mantissa bits and is now
beginning to shift towards an exponential accumulation of error. It is worth nothing the
magnitude of error at this precision level, it is 3 times that of FP16.
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Figure 13: Maximum absolute error through time for 4 mantissa bits (FP8 equivalent).
At this level of precision, the solution is unstable and this is reflected in the behaviour
of the error. The curve is broadly exponential with error values two orders of magnitude
higher than that of FP16 and three higher than FP32.
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4.4.3 Frequency Spectra
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Figure 14: Frequency spectrum for 23 mantissa bits (FP32 equivalent). Plot (a) shows
the result of a Fourier Transform of the wavefield at the beginning of the simulation. In
Plot (b) we show the frequency spectrum at the end of the simulation.
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Figure 15: Frequency spectrum for 10 mantissa bits (FP16 equivalent). Plot (a) shows
the spectrum at the beginning of the simulation. In Plot (b) we show the frequency
spectrum at the end of the simulation. Note the small upticks at the extremes of the
frequency spectrum. The high frequency artefact is of particular significance as it opposes
the dominant frequency of the system, indicating this introduction of noise is a result of
the precision reduction.
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Figure 16: Frequency spectrum for 7 mantissa bits (BF16 equivalent). Plot (a) shows
the spectrum at the beginning of the simulation. In Plot (b) we show the frequency
spectrum at the end of the simulation. At this bit depth we observe a loss of the main
mode of frequency, with the amplitude dropping during the simulation. We see additional
harmonics propagating through the spectrum and significant high and low frequency
noise.
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Figure 17: Frequency spectrum for 4 mantissa bits (FP8 equivalent). Plot (a) shows
the spectrum at the beginning of the simulation. In Plot (b) we show the frequency
spectrum at the end of the simulation. We observe many spurious harmonics in this
frequency spectrum, but the key result here is that the loss of stability is present in the
frequency domain. While before, our maximum amplitude was 100, in Plot (b) it is as
high as 1000, indicating a breakdown of the solution’s stability.
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4.5 Discussion of Reduced-Precision Results

Stable solutions are observed at precision levels equivalent to FP32, FP16, and BF16, with
accuracy degrading as precision decreases. At FP32, numerical and analytical solutions
are visually indistinguishable. At FP16, minor amplitude distortions emerge but remain
within an acceptable error range. At BF16 and lower, significant high-frequency artifacts
appear, particularly at later times, increasing maximum absolute error by 287.6% rela-
tive to FP32. At FP8 precision, the numerical solution becomes unstable. As precision
decreases, we note the loss of the main frequency mode, accompanied by the emergence
of high- and low-frequency noise. Below FP16 equivalent, additional harmonics become
prominent in the frequency spectra. Furthermore, for precision levels below BF16, the
Courant number used in the FD scheme begins to influence the error accumulation over
time, effectively introducing an additional stability condition on the simulation. To clar-
ify, subsequent discussion of bits refers to the number of mantissa bits only.

The first signs of distortion in our numerical solution appear at 10 mantissa bits
as shown in Figure 9. The distortion propagates from the peaks and troughs through
the limbs of the wave as precision is reduced further. At 7 mantissa bits, distortion is
evident across all parts of the wave after both 5 and 10 periods. The distortion observed
becomes increasingly random over time, dominated by high-frequency regions. Unlike
coherent high-frequency signals from seismic sources, which convey valuable subsurface
information, the noise in our simulations is non-physical and spatially random. This
noise can mask subtle geological features, degrade the signal-to-noise ratio, and interfere
with migration and inversion algorithms. Moreover, in FD solvers, high-frequency noise
contributes to numerical dispersion by introducing phase velocity errors that distort wave
propagation, further compromising seismic imaging accuracy (Tam and Webb, 1993).

The error through time for each simulation increases as the number of mantissa bits
is decreased, as expected. The key result, however, is the evolution of the error from the
periodic curve shown in Figure 10 to the exponential shape of Figure 13. The error first
begins to acquire a zero-offset, as shown in Figure 18.

The distinct zero-offset observed at 10 mantissa bits signifies the point at which the
reduced-precision solution starts deviating from the analytical baseline, with errors no
longer balancing over time. This has significant implications for the numerical modelling
of wave equations that naturally oscillate about zero, such as those governing seismic and
acoustic wave propagation. A persistent offset introduces an unphysical bias, distorting
wave propagation and potentially leading to long-term stability issues in reduced-precision
simulations. The evolution of the error from periodic at 10 mantissa bits to exponential
at 5 bits is shown in Figure 19. This behaviour aligns with findings by Gao (2023),
who observed that reduced-precision computations introduce cumulative numerical errors
that deviate from the analytical baseline, manifesting as exponential error growth at
lower precisions in our case. The transition from periodic to exponential error profiles
underscores the limitations of low-precision arithmetic, particularly below 10 mantissa
bits, where the solution fidelity deteriorates rapidly. Such behaviour has implications for
applications requiring high accuracy, as the trade-off between computational efficiency
and solution stability becomes critical.

The numerical artifact seen in Figure 15 marks the onset of spurious harmonics in
the frequency spectrum of the wavefield. Subsequent spectra, such as those shown in
Figures 16 and 17, clearly demonstrate the accumulation of these harmonics, which be-
come increasingly pronounced at lower precisions. This behaviour can be attributed

28



0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

M
ax

 A
bs

ol
ut

e 
Er

ro
r

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

M
ax

 A
bs

ol
ut

e 
Er

ro
r

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

M
ax

 A
bs

ol
ut

e 
Er

ro
r

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

M
ax

 A
bs

ol
ut

e 
Er

ro
r

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

M
ax

 A
bs

ol
ut

e 
Er

ro
r

0 2 4 6 8 10
Time (s)

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ax

 A
bs

ol
ut

e 
Er

ro
r

Figure 18: Plots (a), (b), (c), (d), (e) and (f) show the error profile for our numerical
solution at 15, 14, 13, 12, 11 and 10 bits respectively. We show a least-squares trend line
in red to highlight the acquisition of zero-offset in the error. The trend first starts to
develop in Plot (c), gradually increasing through to the clear sloped trend line observed
in Plot (f).
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Mantissa bits: 10
Mantissa bits: 9
Mantissa bits: 8
Mantissa bits: 7
Mantissa bits: 6
Mantissa bits: 5

Figure 19: We show error profiles through time for 10, 9, 8, 7, 6, 5 mantissa bits to
illustrate the shift from periodic to exponential growth in error. While some periodicity
is maintained at precisions below 10 bits, the zero-offset continues to grow. At 6 mantissa
bits, the error profile begins to exhibit an exponential trend, and by 5 bits, the exponential
behaviour is unmistakable.
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to rounding errors that compound during the iterative updates of the wavefield under
reduced precision arithmetic. The distribution of numerical artefacts in the frequency
spectra is significant, as they initially appear concentrated at the high and low ends of
the spectrum before propagating to produce the additional harmonics observed. High-
frequency noise contributes to numerical dispersion, further amplifying errors. As Li
et al. (2024) highlight, high-frequency artifacts can lead to wavefield instabilities due to
their exponential amplification during the compensation process. These instabilities can
significantly degrade seismic imaging quality, necessitating additional processing steps to
mitigate this.

Our study of the impact of reduced precision on wave equation solutions highlights
the importance of selecting floating-point formats with bit allocations that align with the
specific requirements of the application.
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Figure 20: Difference between analytical solution and numerical solution for FP32, FP16,
and BF16 equivalent levels of precision. We observe a significant discrepancy in the devi-
ation from the analytical solution for our BF16 equivalent precision level in comparison
to FP16. Note that while both FP16 and BF16 use 16 bits in total, BF16 allocates 7
bits to the mantissa and 8 bits to the exponent, whereas FP16 allocates 10 bits to the
mantissa and 5 bits to the exponent. This allocation gives BF16 a larger dynamic range,
but at the cost of reduced precision in comparison to FP16, a fact that is clearly shown
by the difference in solutions.

As shown in Figure 20, solutions obtained with FP16 equivalent precision are signif-
icantly closer to those of the industry-standard FP32. In contrast, the BF16 equivalent
precision deviates markedly from both FP32 and FP16, particularly at later simula-
tion times. This inadequacy is further evidenced in Figure 21, which shows the error
progression over time. Previous studies, such as Fabien-Ouellet (2020) and Wan et al.
(2024), have successfully employed FP16 for seismic modelling with reduced-precision
arithmetic. Our findings further support the conclusion that FP16 is the most suitable
reduced-precision format for seismic applications. Beyond seismic modelling, our results
suggest that BF16 precision may be unsuitable for a broader range of scientific computing
tasks. Unlike wave equations, which are not chaotic systems and thus accumulate error
in a relatively controlled manner, chaotic systems such as fluid dynamics are far more
sensitive to error accumulation.
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Figure 21: Maximum absolute error profile over time for FP32, FP16, and BF16 equiva-
lent levels of precision. We observe similar, periodic behaviour for both FP32 and FP16,
with FP16 displaying a significant zero-offset as shown in Figure 18. The error profile for
BF16 is clearly distinct, lacking periodicity and increasing in a comparatively exponential
fashion.

5 Conclusions and Future Work

5.1 Conclusions

In this work, we propose a two-step approach to leveraging modern computational hard-
ware in seismic modelling:

• Scaling wave equations: Normalising physical parameters to ∼ 1 ensures wave
equations fit within the dynamic range of reduced precision floating-point formats.

• Solving in reduced precision: Once scaled, wave equations can be accurately
solved using FP16 arithmetic, leveraging AI-optimized hardware.

5.1.1 Scaling Wave Equations

Our scaling method proves effective across various seismic modelling contexts. It works
best for equations governing quantities not explicitly coupled with time, such as the
acoustic wave equation, the TTI equations of Fletcher et al. (2009), and stress ten-
sor components from Virieux (1986). However, caution is required for time-dependent
quantities. In Virieux (1986), the velocity vector undergoes a systematic shift due to
the new time unit, producing a numerically distinct yet qualitatively similar solution.
More broadly, our method mitigates overflow and underflow by removing extreme values
while preserving system behaviour. As it is based on physical units, it extends beyond
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geophysics to other PDEs and numerical methods. This generality suggests potential
applications in diverse computational domains requiring efficient PDE solutions.

5.1.2 Solving Wave Equations in Reduced Precision

Our investigation of reduced precision arithmetic yields key insights for seismic modelling
and computational physics. FP16 precision proves suitable for solving wave equations,
in agreement with Fabien-Ouellet (2020) and Wan et al. (2024). In contrast, BF16’s bit
allocation results in three times the error of FP16, making it unsuitable for seismic appli-
cations despite identical memory savings. Given FP16’s superior accuracy, BF16 is likely
unsuitable for other scientific computing tasks, particularly in chaotic systems sensitive to
error accumulation. Like FP8, BF16 appears better suited to AI and machine learning,
whereas FP16 remains the reduced-precision format of choice for scientific computing.
These findings underscore the importance of aligning numerical methods with modern
hardware capabilities, paving the way for more efficient and accurate simulations across
scientific disciplines.

5.2 Future work

This work leaves a few open questions that could be addressed by future studies:

• Validating scaling method on modern computational hardware: A logi-
cal next step is to implement a similar test case to the 1D acoustic wave system
described in this work, applying the proposed scaling method and solving it using
hardware optimised for reduced precision arithmetic. Such a study would serve
to validate the accuracy of the scaling method in real-world computational envi-
ronments while also quantifying the performance gains achievable through reduced
precision. This investigation would not only advance the field of seismic mod-
elling but also provide insights into the broader applicability of the method across
other memory-bound numerical methods, such as finite-volume and particle-based
approaches, demonstrating their potential to leverage modern computational hard-
ware effectively.

• Leveraging Fourier analysis to select units: Future studies could refine the
scaling method by investigating the problem in Fourier space. Rather than defining
a time unit based solely on the CFL condition with a Courant number of 1, as in
this work, a Fourier-based approach could involve taking the Fourier transform of
the wavefield to identify its dominant frequency. This frequency could then inform
a more natural choice of time unit, better aligned with the energy propagation
characteristics of the system. Such an approach could enhance the accuracy and
robustness of the scaling method, particularly for systems with complex frequency
content.

• Integrate Kahan summation to accommodate chaotic systems: Future
work could explore the implementation of the Kahan summation algorithm to pre-
serve numerical accuracy at lower precisions (Gao, 2023). While scaling alone may
suffice for stable wave equations, more chaotic systems, such as those in fluid dy-
namics, may require additional techniques to prevent divergence. Furthermore, the
Kahan summation could enhance the feasibility of sub-FP16 precision formats, such
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as FP8, by mitigating the accumulation of rounding errors. The improved numeri-
cal accuracy provided by this technique may partially compensate for the increased
susceptibility to precision loss inherent in these lower-bit-depth representations.

• Applications of mixed precision: An effective way to balance computational
efficiency with numerical accuracy is through mixed-precision arithmetic. Hetero-
geneous precision strategies—where critical computations such as time-stepping
and summations use FP32/FP64, while spatial derivatives and stencil operations
leverage FP16/FP8—have been successfully applied in deep learning accelerators
(Micikevicius et al., 2017). Extending this approach to wave equation solvers could
enhance performance, particularly in large-scale seismic simulations where memory
bandwidth is a limiting factor.
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Appendices

A Why is Precision Important?

To further illustrate the importance of precision in numerical methods, consider a sim-
plified weather model where temperature, pressure, and velocity fields are updated iter-
atively. Suppose the temperature field is updated using an equation like:

Tn+1 = Tn +∆T · k, (19)

where ∆T = 0.001 and k is a scaling factor. Using FP32, ∆T may round to
0.00100000005, introducing a negligible initial error. However, after 106 iterations, the
total error accumulated by the system increases dramatically:

Total Error = Iterations× Rounding Error. (20)

Insufficient precision can also lead to a loss of significant digits and, consequently,
information when subtracting similar values. Consider a pressure gradient ∆P given by:

∆P = P2 − P1, (21)

where P2 ≈ P1. In a lower precision floating-point format, the difference ∆P may
round to zero due to insufficient significant digits. This loss of information would propa-
gate through the system, affecting any calculations dependent on ∆P , potentially leading
to unphysical results or numerical instability.

B Derivation of Scaling Method

Consider an arbitrary grid discretised in SI units, with spacing ∆x in the x direction and
∆y in the y direction. A spatial unit is first defined as ∆xm, under the assumption that
∆x = ∆y. For irregular grids where ∆x ̸= ∆y, the spatial unit is defined using the larger
of the two spacings. This results in a new grid spacing of:

∆x = 1∆xm (22)

We then make use of the Courant-Friedrichs-Lewy (CFL) condition to ensure the sta-
bility FD schemes (Courant et al., 1967; De Moura and Kubrusly, 2013). This condition
is expressed as:

Vmax∆t

∆x
= C, C ≤ 1, (23)

Here, Vmax is the highest velocity in the system (e.g., the maximum velocity in a given
velocity model), ∆x is the grid spacing, ∆t is the time step, and C is the Courant number.
The physical interpretation of Equation 23 is that, to ensure stability in the FD scheme,
information in the system must not propagate faster than the numerical time-stepping
scheme allows. Setting C = 1 corresponds to the condition for maximum stability in the
FD scheme.

Substituting Vmax in ∆xm/s into Equation 23 with C = 1 gives:

Vmax∆t

1
= 1 (24)
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re-arranging Equation 24 for ∆t yields a value of:

∆t =
1

Vmax

s (25)

We use the result in Equation 25 to define a new time unit of 1
Vmax

s with Vmax given
in ∆xm/s.

This time unit is then applied to all time-dependent parameters in the system, includ-
ing time step, velocity, frequency, and the length of the simulation. This transformation
normalises Vmax to 1 (∆xm)/( 1

Vmax
s) and scales all other values in the velocity model to be

less than or equal to 1. Using Equation 23 to calculate ∆t with this transformed velocity
yields a time step equal to the selected Courant number, ensuring it is always less than
or equal to 1. Scaling the frequency also scales the source term, as the source term is
defined using frequency. Applying the new time unit increases the simulation length by a
factor of Vmax; however, a very large simulation length is not problematic since this value
is not used to update the wavefield directly—it only defines the number of time steps to
iterate over, however this does not increase the number of time steps.

C Velocity and Parameter Models
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Figure 22: Layered velocity model used for the variable test case of the 2D Acoustic Wave
Equation in Devito.
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Figure 23: Variable parameter models used for our test case of Fletcher et al. (2009)’s TTI
system. Plot (a) shows our model for Vp, this is used to calculate subsequent velocities in
the system. Plots (b) and (c) show our models for the dimensionless anisotropic factors
δ and ϵ respectively. Plot (d) shows our field for the tilt angle θ.
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Figure 24: Variable Vp, Vs and ρ models used for our test case of the elastic wave equation
as outlined by Virieux (1986). Plot (a) shows our model for Vp. Plots (b) and (c) show
our models for Vs and ρ respectively.
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