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The problem: Monolithic Domain-specific languages
Tailored to their domain, but actually lots of common generic concepts!

Performance Productivity Portability

Technical challenges:
Independent/Siloed Lack of code reuse Separate Short lifespan

Societal challenges:
Disjoint communities Lack of knowledge transfer

We propose: Using compiler technology!
Contributing a shared compilation stack for HPC in stencil DSLs:

Performance Productivity Portability

Technical benefits:
Composability Code reuse Interoperability Longevity

Societal benefits:
Connected communities Extensive knowledge transfer

Our work enables reuse of HPC and target-specific abstractions across DSL and compiler frameworks and offers synergies across DSL
communities while maintaining the community-tailored interfaces of each DSL compiler.
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(a) Devito, the Open Earth Compiler, and PSyclone independently maintain abstractions for stencils and use
similar imperative constructs. However, HPC features such as parallelism with MPI and GPUs are not universal.
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(b) We combine the optimization and code generation pipelines of Devito, the Open Earth Compiler, and
PSyclone. As a result, optimization passes can be shared and advanced HPC features are available to all tools.

Proposed solution
I Idea: MLIR offers a unified IR but needs

bridging with HPC concepts.
I Fill the gap: Introducing HPC-specific

abstractions for interoperability with MLIR
dialects.

I How: Utilizing xDSL, a python-native clone
of MLIR, and building HPC abstractions.

I Case: Focus on explicit finite difference
(FD) stencil computations as a
representative case study.

Contributions
I An SSA dialect to facilitate automated

domain decomposition for
distributed-memory execution of stencil
kernels via message-passing.

I An SSA dialect for message passing as
a set of modular operations in a standardized
SSA-based IR.

[Upstreamed to MLIR!]
I A prototype implementation of

abstraction-sharing compilation stack
for two HPC stencil-DSL compilers,
PSyclone and Devito, based on the
concepts of SSA and Region and utilizing the
MLIR and xDSL compiler frameworks.

I A performance evaluation demonstrating
that our approach is competitive for a range
of FD stencil computations, compared to the
existing domain-specific compiler stacks, for
CPU shared- and distributed-memory
parallelism, GPUs and FPGAs running
at scale on ARCHER2 and Cirrus.
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A stencil computation being transformed to a rank-local stencil + dmp, and then lowered to MPI.
The data being operated on, shape and halo information, and communication-related information
showcase how we enrich the IR with relevant information to perform rewrites at every level of
abstraction.
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%rank = mpi.comm_rank : i32
// First swap communication calls
%dest = arith.add %rank, %minus_one : i32
%is_in_bounds = arith.cmpi sge, %dest, %zero
scf.if %is_in_bounds {
  %view = memref.subview %ref[0][1][1] : memref<64xf64>
                                       to memref<1xf64>
  // copy data into send buffer and set up communication
  // (omitted for clarity)
  mpi.isend %sptr, %count, %dtype, %dest, %tag, %send_req
  mpi.irecv %rptr, %count, %dtype, %dest, %tag, %recv_req
}
// Second swap
// ...
mpi.waitall %requests, %four  // synchronization barrier
// First swap copy back
scf.if %is_in_bounds {
  %view = memref.subview %ref[1][1][1] : memref<64xf64>
                                       to memref<1xf64>
  memref.copy %recv_buffer_1 to %view
}
// Second swap copy back
// Lowered stencil comes here

%source = stencil.load(%114) : (!field<[0,128]xf64>)
                            -> !temp<?xf64>
%out = stencil.apply(%arg = %source : !temp<?xf64>)
                -> !temp<?xf64> {
  %l = stencil.access %arg[-1] : f64
  %c = stencil.access %arg[0] : f64
  %r = stencil.access %arg[1] : f64
  // %v = %l + %r - 2.0 * %c
  stencil.return %v : f64
}

stencil.store %out to %target([1]:[127])

%ref = builtin.unrealized_conversion_cast %114 :
!field<[0,64]xf64> to memref<64xf62>

dmp.swap(%ref) {
  "grid" = #dmp.grid<2>,
  "swaps" = [
    #dmp.exchange<at [0] size [1]
                source offset [1] to [-1]>,
    #dmp.exchange<at [64] size [1]
                source offset [-1] to [1]>
  ]
} : (memref<64xf64>) -> ()
%source = stencil.load(%114) ...
%out = stencil.apply(%source) ...
stencil.store %out to %target([1]:[64])
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Performance evaluation of selected benchmarks, higher is better:
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(a) Strong scaling of the acoustic
wave kernel, space discretization order
of 4, is competitive against Devito’s
highly optimized MPI modes.
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(b) xDSL’s lowerings through CUDA
outperform Devito’s tiled OpenACC
kernels for more than 1.5x when it
comes for 3D kernels on an NVIDIA
V100.
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(c) Multi-node strong scaling CPU
throughput for xDSL-PSyclone for
tracer advection [512, 512, 128] on
ARCHER2
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(d) xDSL-PSyclone single node GPU
(Cirrus) throughput, where tracer
advection benchmark performance is
limited by the MLIR scf parallel
lowering transformations.


