
A shared compilation stack for distributed-memory
parallelism in stencil DSLs

George Bisbas *1 Anton Lydike *2 Emilien Bauer *2 Nick Brown *3
Mathieu Fehr 2 Lawrence Mitchell Gabriel Rodriguez-Canal 2 Maurice Jamieson 3

Paul H. J. Kelly 1 Michel Steuwer 4 Tobias Grosser 5

1Imperial College London, UK 2University of Edinburgh, UK 3EPCC, University of Edinburgh, UK
4Technische Universität Berlin, Germany 5University of Cambridge, UK

*authors equally contributed

The problem: Monolithic Domain-specific languages
Tailored to their domain, but actually lots of common generic concepts!

Performance Productivity Portability

Technical challenges:
Independent/Siloed Lack of code reuse Separate Short lifespan

Societal challenges:
Disjoint communities Lack of knowledge transfer

We propose: Using compiler technology!
Contributing a shared compilation stack for HPC in stencil DSLs:

Performance Productivity Portability

Technical benefits:
Composability Code reuse Interoperability Longevity

Societal benefits:
Connected communities Extensive knowledge transfer

Our work enables reuse of HPC and target-specific abstractions across DSL and compiler frameworks and offers synergies across DSL
communities while maintaining the community-tailored interfaces of each DSL compiler.

evito
Medical

Seismic
Fluid

Dynamics

Symbolic Math

IR

DSL

Apps

Stencil Expressions

Iteration/Expression Tree
(AST)

OpenMP MPI OpenACC

OpenMP MPI OpenACC

Target

Climate

Fortran + Coding Conventions

Stencil Data Structures

Fortran IR

OpenMP MPI

Climate

Open Earth Compiler

OpenMP MPI OpenACC

Stencil IR

Imperative IRs

GPUSCF Arith Memref

CUDA ROCM

(a) Devito, the Open Earth Compiler, and PSyclone independently maintain abstractions for stencils and use
similar imperative constructs. However, HPC features such as parallelism with MPI and GPUs are not universal.

evito Open Earth Compiler

(b) We combine the optimization and code generation pipelines of Devito, the Open Earth Compiler, and
PSyclone. As a result, optimization passes can be shared and advanced HPC features are available to all tools.

Proposed solution
I Idea: MLIR offers a unified IR but needs

bridging with HPC concepts.
I Fill the gap: Introducing HPC-specific

abstractions for interoperability with MLIR
dialects.

I How: Utilizing xDSL, a python-native clone
of MLIR, and building HPC abstractions.

I Case: Focus on explicit finite difference
(FD) stencil computations as a
representative case study.

Contributions
I An SSA dialect to facilitate automated

domain decomposition for
distributed-memory execution of stencil
kernels via message-passing.

I An SSA dialect for message passing as
a set of modular operations in a standardized
SSA-based IR.

[Upstreamed to MLIR!]
I A prototype implementation of

abstraction-sharing compilation stack
for two HPC stencil-DSL compilers,
PSyclone and Devito, based on the
concepts of SSA and Region and utilizing the
MLIR and xDSL compiler frameworks.

I A performance evaluation demonstrating
that our approach is competitive for a range
of FD stencil computations, compared to the
existing domain-specific compiler stacks, for
CPU shared- and distributed-memory
parallelism, GPUs and FPGAs running
at scale on ARCHER2 and Cirrus.

References
1. Fehr M., et al. ”Sidekick compilation with xDSL”,

arXiv:2311.07422 (2024)
2. Luporini, F., et al. ”Architecture and performance of

Devito, a system for automated stencil computation.”
ACM TOMS 46.1 (2020): 1-28

A stencil computation being transformed to a rank-local stencil + dmp, and then lowered to MPI.
The data being operated on, shape and halo information, and communication-related information
showcase how we enrich the IR with relevant information to perform rewrites at every level of
abstraction.

0 641 2 62 63

%rank = mpi.comm_rank : i32
// First swap communication calls
%dest = arith.add %rank, %minus_one : i32
%is_in_bounds = arith.cmpi sge, %dest, %zero
scf.if %is_in_bounds {
 %view = memref.subview %ref[0][1][1] : memref<64xf64>
 to memref<1xf64>
 // copy data into send buffer and set up communication
 // (omitted for clarity)
 mpi.isend %sptr, %count, %dtype, %dest, %tag, %send_req
 mpi.irecv %rptr, %count, %dtype, %dest, %tag, %recv_req
}
// Second swap
// ...
mpi.waitall %requests, %four // synchronization barrier
// First swap copy back
scf.if %is_in_bounds {
 %view = memref.subview %ref[1][1][1] : memref<64xf64>
 to memref<1xf64>
 memref.copy %recv_buffer_1 to %view
}
// Second swap copy back
// Lowered stencil comes here

%source = stencil.load(%114) : (!field<[0,128]xf64>)
 -> !temp<?xf64>
%out = stencil.apply(%arg = %source : !temp<?xf64>)
 -> !temp<?xf64> {
 %l = stencil.access %arg[-1] : f64
 %c = stencil.access %arg[0] : f64
 %r = stencil.access %arg[1] : f64
 // %v = %l + %r - 2.0 * %c
 stencil.return %v : f64
}

stencil.store %out to %target([1]:[127])

%ref = builtin.unrealized_conversion_cast %114 :
!field<[0,64]xf64> to memref<64xf62>

dmp.swap(%ref) {
 "grid" = #dmp.grid<2>,
 "swaps" = [
 #dmp.exchange<at [0] size [1]
 source offset [1] to [-1]>,
 #dmp.exchange<at [64] size [1]
 source offset [-1] to [1]>
]
} : (memref<64xf64>) -> ()
%source = stencil.load(%114) ...
%out = stencil.apply(%source) ...
stencil.store %out to %target([1]:[64])

Stencil level IR DMP level IR MPI level IRGlobal to Local DMP to MPI

Global Domain Local Domains with halo exchanges highlighted

1 127

Local domain

Exchanged
area

0 641 2 62 63

Performance evaluation of selected benchmarks, higher is better:

1 2 4 8 16 32 64 128
Number of nodes

4
8

16
32
64

128
256
512

1024
2048

Throughput
(GPts/s)

Linear
Devito

xDSL

(a) Strong scaling of the acoustic
wave kernel, space discretization order
of 4, is competitive against Devito’s
highly optimized MPI modes.

wa
ve
2d
-5p
t

wa
ve
2d
-9p
t

wa
ve
2d
-13
pt

wa
ve
3d
-7p
t

wa
ve
3d
-13
pt

wa
ve
3d
-19
pt

0

20

40

60

T/put
(GPts/s)

1.1x 1.1x 1.2x 1.5x
1.5x

1.4x

OpenACC-Devito xDSL

(b) xDSL’s lowerings through CUDA
outperform Devito’s tiled OpenACC
kernels for more than 1.5x when it
comes for 3D kernels on an NVIDIA
V100.

1 2 4 8 16 32 64 128
Number of nodes

0.5
1
2
4
8

16
32
64

Throughput
(GPts/s) Linear xDSL

(c) Multi-node strong scaling CPU
throughput for xDSL-PSyclone for
tracer advection [512, 512, 128] on
ARCHER2

pw
-8m

pw
-33
m

pw
-13
4m

tra
ad
v-4
m

tra
ad
v-3
2m

tra
ad
v-1
28
m

0

2

4

6

8

T/put
(GPts/s)

x24.14
x14.60x11.01

x0.62x0.83x0.95

PSyclone xDSL

(d) xDSL-PSyclone single node GPU
(Cirrus) throughput, where tracer
advection benchmark performance is
limited by the MLIR scf parallel
lowering transformations.

