
0

Automatic Differentiation
for Adjoint Stencil Loops

Jan Hückelheim1 Navjot Kukreja1 Sri Hari Krishna Narayanan2

Fabio Luporini1 Gerard Gorman1 Paul Hovland2

October 3, 2019

1Imperial College London, UK
2Argonne National Laboratory, USA

0

1

Outline

• Automatic Differentiation (AD)

• AD for parallel programs

• Stencil loops

• Our work: AD for stencil loops

1

Automatic differentiation (AD)

• Given a program (”primal”) that implements some function

J = F (α),

• AD generates a new program that implements its derivative.

2

Why would we want AD?

• Example: A fluid dynamics code that computes pressure loss in a pipe,
subject to pipe geometry.

• AD computes derivative of pressure loss wrt. design parameters.

• We can automatically modify shape to minimise pressure loss

• Applications: Engineering optimisation, Imaging, Machine learning, ...

3

AD approaches

There are many ways of implementing AD:

Source-to-source transformation

• Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

• Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

• Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

High level, manual or automated

• Start with problem definition, derive adjoint problem, implement the
adjoint code separately.

4

Algorithmic differentiation (AD)

There are two fundamentally different modes:

Tangent mode, Forward mode

• Computes the Jacobian-vector product

J̇ = (∇F (x)) · α̇.

• Derivatives are propagated along with the original computation.

Adjoint mode, Reverse mode, backpropagation

• Computes the transpose Jacobian-vector product

ᾱ = (∇F (x))T · J̄.

• Path through original computation is traced, derivatives are propagated
in reverse order.

5

Forward vs. reverse

• Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

• Adjoint mode is cheaper for many inputs and few outputs (run once, get
all directional derivatives).

J

alpha

intermediate
values

Original program Reverse
differentiation

Forward differentiation

6

Challenge: derivative parallelisation in reverse mode

• If a shared memory region is read concurrently in original program, then
the corresponding derivative will be updated concurrently.

• We can only easily parallelise adjoint if primal had exclusive read
access∗

• How can we detect this?

• What can we do otherwise?

∗ Förster (2014): Algorithmic Differentiation of Pragma-Defined Parallel Regions: Differentiating Computer Programs Containing OpenMP

7

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do

• Answer: Yes

c

b

Loop 1

8

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do

• Answer: No

c

b

a

Loop 2

9

Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 3:

real, dimension(10) :: b,c

integer, dimension(10) :: neigh

call read_from_file(neigh)

!$omp parallel do

do i=1,10

b(i) = c(neigh(i))

end do

• Answer: Depends on file contents

c

b

? Loop 3

10

Solutions?

• Detecting exclusive read access is impossible in general

• Without exclusive read access, we must pay a price:

• Use reductions (extra memory)
• Use atomics (extra time)
• Some combination

• Can we do better in special cases?

11

AD on a Stencil

Figure 1: AD on a gather produces a scatter

12

1D Stencil Example

The Stencil is originally a gather operation

#pragma omp parallel for private(i)

for (i=1; i<=n - 1; i++) {

r[i] = c[i]*(2.0*u[i-1]-3.0*u[i]+4*u[i+1]);

}

13

1D Stencil Example

AD converts it to a scatter

for (i=1; i<=n-1; i++) {

ub[i-1] += 2.0 * c[i] * rb[i];

ub[i] -= 3.0 * c[i] * rb[i];

ub[i+1] += 4.0 * c[i] * rb[i];

}

14

1D Stencil Example

The scatter can be split into individual updates

for (i=1; i<=n-1; i++) {

ub[i-1] += 2.0 * c[i] * rb[i];

}

for (i=1; i<=n-1; i++) {

ub[i] -= 3.0 * c[i] * rb[i];

}

for (i=1; i<=n-1; i++) {

ub[i+1] += 4.0* c[i] * rb[i];

}
15

1D Stencil Example

Shift indices to write to loop counter element

for (j=0; j<=n-2; j++) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

}

for (j=1; j<=n-1; j++) {

ub[j] -= 3.0 * c[j] * rb[j];

}

for (j=2; j<=n; j++) {

ub[j] += 4.0 * c[j-1] * rb[j-1];

} 16

1D Stencil Example

#pragma omp parallel for private(j)

for (j=2; j<=n-2; j++) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

ub[j] -= 3.0 * c[j] * rb[j];

ub[j] += 4.0 * c[j-1] * rb[j-1];

}

ub[0] += 2.0 * c[1] * rb[1];

// ... other remainders: ub[1], ub[n-1], ub[n]
17

Higher dimensions

In higher dimensions, we need remainders for edges and corners
18

Performance Results - Scalability

1 2 4 6 8 12

1

2

4
6
8

12

Number of Threads

S
pe

ed
up

Scalability of the Wave Equation on Broadwell

Primal
Adjoint
Atomics
PerforAD

Ideal

Figure 2: Speedups for the wave equation solver on a Broadwell processor,
using up to 12 threads. The conventinal adjoint code with manual
parallelisation does not scale at all. The primal and PerforAD-generated
adjoint benefit from using all 12 cores. 19

Performance Results - Run times

Primal Serial

PerforAD Serial

Adjoint Serial

Primal Parallel

PerforAD Parallel0

2

4

6

8

10

4.14

8.52

5.43

0.9
1.61

R
un

tim
e

(s
)

Runtimes of the Wave Equation on Broadwell

Figure 3: Absolute runtimes for wave equation primal and adjoint stencils
and conventional adjoints in serial, as well as best observed primal and
adjoint stencil run time in parallel. The best-observed performance of adjoint
stencils was with 12 threads and is faster than the conventional adjoint by a
factor of 3.4×.

20

PerforAD

• We release tool with this paper to generate these loop nests

• https://github.com/jhueckelheim/PerforAD

import sympy as sp; import perforad

Define symbols

c = sp.Function("c")

u_1 = sp.Function("u_1"); u_1_b = sp.Function("u_1_b")

u_2 = sp.Function("u_2"); u_2_b = sp.Function("u_2_b")

i,j,k,D,n = sp.symbols("i,j,k,D,n")

Build stencil expression

u_xx = u_1(i-1) - 2*u_1(i) + u_1(i+1)

expr = 2.0*u_1(i) - u_2(i) + c(i)*D*u_xx

lp = perforad.makeLoopNest(lhs=u(i), rhs=expr,

counters = [i], bounds={i:[1,n-2]})

perforad.printfunction(name="wave1d_perf_b",

loopnestlist=lp.diff({u:u_b, u_1:u_1_b, u_2: u_2_b}))

21

Conclusion, Future Work

• PerforAD-generated adjoint stencils preserve scalability of original
program

• Paper discusses differentiation and code generation in more detail

• We also discuss reproducibility and floating point associativity

• See paper for full details, and runtimes on KNL

• Future work:

• Explore other code generation strategies (e.g. fewer remainder loops, but
with branches)

• ML workloads
• SIMD and GPU programs
• Explore other polyhedral transformations in AD context

22

Thank you

Thank you

Questions?

23

References i

24

