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» Automatic Differentiation (AD)
» AD for parallel programs
« Stencil loops

» Our work: AD for stencil loops



Automatic differentiation (AD)

» Given a program (“primal”) that implements some function
J = F(a),

» AD generates a new program that implements its derivative.



Why would we want AD?

» Example: A fluid dynamics code that computes pressure loss in a pipe,
subject to pipe geometry.

» AD computes derivative of pressure loss wrt. design parameters.

» We can automatically modify shape to minimise pressure loss

» Applications: Engineering optimisation, Imaging, Machine learning, ...



AD approaches

There are many ways of implementing AD:

Source-to-source transformation

» Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

« Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

» Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

High level, manual or automated

« Start with problem definition, derive adjoint problem, implement the
adjoint code separately.



Algorithmic differentiation (AD)

There are two fundamentally different modes:
Tangent mode, Forward mode
» Computes the Jacobian-vector product

J = (VF(x)) - é.

« Derivatives are propagated along with the original computation.

Adjoint mode, Reverse mode, backpropagation
» Computes the transpose Jacobian-vector product
a=(VF(x))"-J.

« Path through original computation is traced, derivatives are propagated
in reverse order.



Forward vs. reverse

» Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

» Adjoint mode is cheaper for many inputs and few outputs (run once, get
all directional derivatives).

Original program Reverse
differentiation
e B R DEEDO
intermediatel:| L[] Ooom
|
values OO 0L
J O -

Forward differentiation

| QU EREREN RERERENEE NEEEREREN
mOo Oodo Ooo oA
aod oo o oo

O O O O



Challenge: derivative parallelisation in reverse mode

If a shared memory region is read concurrently in original program, then
the corresponding derivative will be updated concurrently.

» We can only easily parallelise adjoint if primal had exclusive read
access”*

* How can we detect this?

* What can we do otherwise?

* Férster (2014): Algorithmic Differentiation of Pragma-Defined Parallel Regions: Differentiating Computer Programs Containing OpenMP



Exclusive read access examples

» Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c
!'Somp parallel do

do i=1,10

b (i) = sin(c(i))
end do

* Answer: Yes

:HHHHH



Exclusive read access examples

» Do these loops have exclusive read access?

! Example loop 2:

real :: a
real, dimension(10) :: b,c

!'Somp parallel do
do i=1,10

b(i) = a+c (1)
end do

« Answer: No

+ + Loop 2



Exclusive read access examples

» Do these loops have exclusive read access?
! Example loop 3:
real, dimension(10) :: b,c

integer, dimension(10) :: neigh
call read_from_file (neigh)

!'Somp parallel do
do i=1,10

b(i) = c(neigh(i))
end do

» Answer: Depends on file contents

? Loop 3



» Detecting exclusive read access is impossible in general
» Without exclusive read access, we must pay a price:

» Use reductions (extra memory)
» Use atomics (extra time)
« Some combination

» Can we do better in special cases?



AD on a Stencil

Figure 1: AD on a gather produces a scatter



1D Stencil Example

iteration space

The Stencil is originally a gather operation

#pragma omp parallel for private (i)
for ( i=1; i<=n - 1; i++ ) {

r{i] = c[i]*(2.0%xu[i-1]-3.0xuli]l+4~uli+1l]);



1D Stencil Example

iteration space
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AD converts it to a scatter

for ( i=1; i<=n-1; i++ ) {
ub[i-1] += 2.0 % c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
ub[i+1] += 4.0 % c[i] * rb[i];



1D Stencil Example

iteration space | | iteration space iteration space
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The scatter can be split into individual updates
for ( i=1; i<=n-1; i++ ) {
ub[i-1] 4= 2.0 * c[i] * rb[i];

t

for ( i=1; i<=n-1; i++ ) {
ub[i] -= 3.0 * c[i] * rb[i];

t

for ( i=1; i<=n-1; i++ ) {
ub[i1i+1] += 4.0+ c[i] * rb[i];



1D Stencil Example
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Shift indices to write to loop counter element
for ( j=0; j<=n-2; j++ ) {
ub[j] += 2.0 x c[Jj+1] = rb[j+1];
}
for ( j=
]

1; J<=n-1; J++ ) |
ub [ ] =

-= 3.0 x c[J] * rb[J];
}
for ( j=2; j<=n; j++ ) {
ub[j] += 4.0 * c[j-1]1 * rb[j-11;



1D Stencil Example
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#pragma omp parallel for private(3J)
for ( j=2; j<=n-2; j++ ) |

3] += 2.0 x c[j+1] = rb[j+1];
jl == 3.0 = c[J] = rb[Jj];

jl += 4.0 * c[3-1] * rb[j-1];

ub[0] += 2.0 * c[1l] * rb[1l];
// ... other remainders: ub[1l], ub[n-1], ub[n]



Higher dimensions
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In higher dimensions, we need remainders for edges and corners




Performance Results - Scalability

Scalability of the Wave Equation on Broadwell
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Figure 2: Speedups for the wave equation solver on a Broadwell processor,

using up to 12 threads. The conventinal adjoint code with manual

parallelisation does not scale at all. The primal and PerforAD-generated

adjoint benefit from using all 12 cores. 19



Performance Results - Run times

Runtimes of the Wave Equation on Broadwell
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Figure 3: Absolute runtimes for wave equation primal and adjoint stencils
and conventional adjoints in serial, as well as best observed primal and
adjoint stencil run time in parallel. The best-observed performance of adjoint
stencils was with 12 threads and is faster than the conventional adjoint by a
factor of 3.4 x.
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PerforAD

» We release tool with this paper to generate these loop nests
* https://github.com/jhueckelheim/PerforAD

import sympy as sp; import perforad
# Define symbols

c = sp.Function("c")
u_l = sp.Function("u_1"); u_l_b = sp.Function("u_1_b")
u_2 = sp.Function("u_2"); u_2_b = sp.Function("u_2_b")

i,j,k,D,n = sp.symbols("i, j, k,D,n")
# Build stencil expression
u_xx = u_1(1i-1) - 2+u_1(1) + u_1(i+1)
expr = 2.0xu_1(i) - u_2(i) + c(i)+Dxu_xx
lp = perforad.makeLoopNest (lhs=u (i), rhs=expr,
counters = [i], bounds={i:[1,n-2]})
perforad.printfunction (name="waveld_perf_b",
loopnestlist=lp.diff ({u:u_b, u_l:u_1_b, u_2: u_2_Db}))
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Conclusion, Future Work

» PerforAD-generated adjoint stencils preserve scalability of original
program

» Paper discusses differentiation and code generation in more detail
» We also discuss reproducibility and floating point associativity

» See paper for full details, and runtimes on KNL

» Future work:

« Explore other code generation strategies (e.g. fewer remainder loops, but
with branches)

» ML workloads

» SIMD and GPU programs

+ Explore other polyhedral transformations in AD context
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Thank you

Thank you

Questions?
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