

Automatic Differentiation
for Adjoint Stencil Loops

Jan Hiickelheim' Navjot Kukreja' Sri Hari Krishna Narayanan®

Fabio Luporini' Gerard Gorman' Paul Hovland?
October 3, 2019

"Imperial College London, UK
2Argonne National Laboratory, USA

» Automatic Differentiation (AD)
» AD for parallel programs
« Stencil loops

» Our work: AD for stencil loops

Automatic differentiation (AD)

» Given a program (“primal”) that implements some function
J = F(a),

» AD generates a new program that implements its derivative.

Why would we want AD?

» Example: A fluid dynamics code that computes pressure loss in a pipe,
subject to pipe geometry.

» AD computes derivative of pressure loss wrt. design parameters.

» We can automatically modify shape to minimise pressure loss

» Applications: Engineering optimisation, Imaging, Machine learning, ...

AD approaches

There are many ways of implementing AD:

Source-to-source transformation

» Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

« Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

» Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

High level, manual or automated

« Start with problem definition, derive adjoint problem, implement the
adjoint code separately.

Algorithmic differentiation (AD)

There are two fundamentally different modes:
Tangent mode, Forward mode
» Computes the Jacobian-vector product

J = (VF(x)) - é.

« Derivatives are propagated along with the original computation.

Adjoint mode, Reverse mode, backpropagation
» Computes the transpose Jacobian-vector product
a=(VF(x))"-J.

« Path through original computation is traced, derivatives are propagated
in reverse order.

Forward vs. reverse

» Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

» Adjoint mode is cheaper for many inputs and few outputs (run once, get
all directional derivatives).

Original program Reverse
differentiation
e B R DEEDO
intermediatel:| L[] Ooom
|
values OO 0L
J O -

Forward differentiation

| QU EREREN RERERENEE NEEEREREN
mOo Oodo Ooo oA
aod oo o oo

O O O O

Challenge: derivative parallelisation in reverse mode

If a shared memory region is read concurrently in original program, then
the corresponding derivative will be updated concurrently.

» We can only easily parallelise adjoint if primal had exclusive read
access”*

* How can we detect this?

* What can we do otherwise?

* Férster (2014): Algorithmic Differentiation of Pragma-Defined Parallel Regions: Differentiating Computer Programs Containing OpenMP

Exclusive read access examples

» Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c
!'Somp parallel do

do i=1,10

b (i) = sin(c(i))
end do

* Answer: Yes

:HHHHH

Exclusive read access examples

» Do these loops have exclusive read access?

! Example loop 2:

real :: a
real, dimension(10) :: b,c

!'Somp parallel do
do i=1,10

b(i) = a+c (1)
end do

« Answer: No

+ + Loop 2

Exclusive read access examples

» Do these loops have exclusive read access?
! Example loop 3:
real, dimension(10) :: b,c

integer, dimension(10) :: neigh
call read_from_file (neigh)

!'Somp parallel do
do i=1,10

b(i) = c(neigh(i))
end do

» Answer: Depends on file contents

? Loop 3

» Detecting exclusive read access is impossible in general
» Without exclusive read access, we must pay a price:

» Use reductions (extra memory)
» Use atomics (extra time)
« Some combination

» Can we do better in special cases?

AD on a Stencil

Figure 1: AD on a gather produces a scatter

1D Stencil Example

iteration space

The Stencil is originally a gather operation

#pragma omp parallel for private (i)
for (i=1; i<=n - 1; i++) {

r{i] = c[i]*(2.0%xu[i-1]-3.0xuli]l+4~uli+1l]);

1D Stencil Example

iteration space

ub | \\I A 4
\

r—bl IP q“l |IP qﬂll I

AD converts it to a scatter

for (i=1; i<=n-1; i++) {
ub[i-1] += 2.0 % c[i] * rb[i];
ub[i] -= 3.0 % c[i] * rb[i];
ub[i+1] += 4.0 % c[i] * rb[i];

1D Stencil Example

iteration space | | iteration space iteration space

ub [y INNEEEAANARNNE RN

A\

) 0 L N N L By R A A LN

[I I
|

The scatter can be split into individual updates
for (i=1; i<=n-1; i++) {
ub[i-1] 4= 2.0 * c[i] * rb[i];

t

for (i=1; i<=n-1; i++) {
ub[i] -= 3.0 * c[i] * rb[i];

t

for (i=1; i<=n-1; i++) {
ub[i1i+1] += 4.0+ c[i] * rb[i];

1D Stencil Example

iteration space | | iteration space | iteration space
ub INNEEENRANAR III¢}4IIA}4}41/I
eoll PR L LT T 77T |
L 1 | I L

Shift indices to write to loop counter element
for (j=0; j<=n-2; j++) {
ub[j] += 2.0 x c[Jj+1] = rb[j+1];
}
for (j=
]

1; J<=n-1; J++) |
ub [] =

-= 3.0 x c[J] * rb[J];
}
for (j=2; j<=n; j++) {
ub[j] += 4.0 * c[j-1]1 * rb[j-11;

1D Stencil Example

=T
LIT T T T T]

left remainder intersection right remainder
—— |

o INE N NN RN RN

)

L e R L

#pragma omp parallel for private(3J)
for (j=2; j<=n-2; j++) |

3] += 2.0 x c[j+1] = rb[j+1];
jl == 3.0 = c[J] = rb[Jj];

jl += 4.0 * c[3-1] * rb[j-1];

ub[0] += 2.0 * c[1l] * rb[1l];
// ... other remainders: ub[1l], ub[n-1], ub[n]

Higher dimensions

the gh
e RIS <
. | | .
e R o -
N

eI o
thefpl HR o

In higher dimensions, we need remainders for edges and corners

Performance Results - Scalability

Scalability of the Wave Equation on Broadwell

12 —
8| e
6| 2 - ;
. —e— Primal
S 4 2 1= Adjoint
© 2% .
o o Atomics
o 21 —+— PerforAD
-o- |deal
1 L] L i —a il
| » | | |
1 2 4 6 8 12

Number of Threads

Figure 2: Speedups for the wave equation solver on a Broadwell processor,

using up to 12 threads. The conventinal adjoint code with manual

parallelisation does not scale at all. The primal and PerforAD-generated

adjoint benefit from using all 12 cores. 19

Performance Results - Run times

Runtimes of the Wave Equation on Broadwell

10 — | | D | | =N
8.52

6| 5.43 —
4| g -
ol 1.61_

: n I

(2 ‘\a e\ \\e\ \e\
9(\“‘3 ?g(pO Eg\o\ ?fi:\a ?2:?;\ pa®
pef

Figure 3: Absolute runtimes for wave equation primal and adjoint stencils
and conventional adjoints in serial, as well as best observed primal and
adjoint stencil run time in parallel. The best-observed performance of adjoint
stencils was with 12 threads and is faster than the conventional adjoint by a
factor of 3.4 x.

20

PerforAD

» We release tool with this paper to generate these loop nests
* https://github.com/jhueckelheim/PerforAD

import sympy as sp; import perforad
Define symbols

c = sp.Function("c")
u_l = sp.Function("u_1"); u_l_b = sp.Function("u_1_b")
u_2 = sp.Function("u_2"); u_2_b = sp.Function("u_2_b")

i,j,k,D,n = sp.symbols("i, j, k,D,n")
Build stencil expression
u_xx = u_1(1i-1) - 2+u_1(1) + u_1(i+1)
expr = 2.0xu_1(i) - u_2(i) + c(i)+Dxu_xx
lp = perforad.makeLoopNest (lhs=u (i), rhs=expr,
counters = [i], bounds={i:[1,n-2]})
perforad.printfunction (name="waveld_perf_b",
loopnestlist=lp.diff ({u:u_b, u_l:u_1_b, u_2: u_2_Db}))

21

Conclusion, Future Work

» PerforAD-generated adjoint stencils preserve scalability of original
program

» Paper discusses differentiation and code generation in more detail
» We also discuss reproducibility and floating point associativity

» See paper for full details, and runtimes on KNL

» Future work:

« Explore other code generation strategies (e.g. fewer remainder loops, but
with branches)

» ML workloads

» SIMD and GPU programs

+ Explore other polyhedral transformations in AD context

22

Thank you

Thank you

Questions?

23

References i

24

