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Outline

• Automatic Differentiation (AD)

• AD for parallel programs

• Stencil loops

• Our work: AD for stencil loops
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Automatic differentiation (AD)

• Given a program (”primal”) that implements some function

J = F (α),

• AD generates a new program that implements its derivative.
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Why would we want AD?

• Example: A fluid dynamics code that computes pressure loss in a pipe,
subject to pipe geometry.

• AD computes derivative of pressure loss wrt. design parameters.

• We can automatically modify shape to minimise pressure loss

• Applications: Engineering optimisation, Imaging, Machine learning, ...
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AD approaches

There are many ways of implementing AD:

Source-to-source transformation

• Creates code that computes partial derivative of each operation, and
assembles them with chain-rule.

• Fast, efficient, but hard to get right. Mainly Fortran/C

Operator overloading

• Trace the computation at runtime, compute adjoints based on trace.
Slow, huge memory footprint, easy to implement. Works for most
high-level languages.

High level, manual or automated

• Start with problem definition, derive adjoint problem, implement the
adjoint code separately.
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Algorithmic differentiation (AD)

There are two fundamentally different modes:

Tangent mode, Forward mode

• Computes the Jacobian-vector product

J̇ = (∇F (x)) · α̇.

• Derivatives are propagated along with the original computation.

Adjoint mode, Reverse mode, backpropagation

• Computes the transpose Jacobian-vector product

ᾱ = (∇F (x))T · J̄.

• Path through original computation is traced, derivatives are propagated
in reverse order.
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Forward vs. reverse

• Tangent mode is simple to understand and implement, but: Need to
re-run for every input.

• Adjoint mode is cheaper for many inputs and few outputs (run once, get
all directional derivatives).

J

alpha

intermediate
values

Original program Reverse
differentiation

Forward differentiation
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Challenge: derivative parallelisation in reverse mode

• If a shared memory region is read concurrently in original program, then
the corresponding derivative will be updated concurrently.

• We can only easily parallelise adjoint if primal had exclusive read
access∗

• How can we detect this?

• What can we do otherwise?

∗ Förster (2014): Algorithmic Differentiation of Pragma-Defined Parallel Regions: Differentiating Computer Programs Containing OpenMP
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 1

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = sin(c(i))

end do

• Answer: Yes

c

b

Loop 1
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 2:

real :: a

real, dimension(10) :: b,c

!$omp parallel do

do i=1,10

b(i) = a+c(i)

end do

• Answer: No

c

b

a

Loop 2
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Exclusive read access examples

• Do these loops have exclusive read access?

! Example loop 3:

real, dimension(10) :: b,c

integer, dimension(10) :: neigh

call read_from_file(neigh)

!$omp parallel do

do i=1,10

b(i) = c(neigh(i))

end do

• Answer: Depends on file contents

c

b

? Loop 3
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Solutions?

• Detecting exclusive read access is impossible in general

• Without exclusive read access, we must pay a price:

• Use reductions (extra memory)
• Use atomics (extra time)
• Some combination

• Can we do better in special cases?
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AD on a Stencil

Figure 1: AD on a gather produces a scatter
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1D Stencil Example

The Stencil is originally a gather operation

#pragma omp parallel for private(i)

for ( i=1; i<=n - 1; i++ ) {

r[i] = c[i]*(2.0*u[i-1]-3.0*u[i]+4*u[i+1]);

}
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1D Stencil Example

AD converts it to a scatter

for ( i=1; i<=n-1; i++ ) {

ub[i-1] += 2.0 * c[i] * rb[i];

ub[i] -= 3.0 * c[i] * rb[i];

ub[i+1] += 4.0 * c[i] * rb[i];

}
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1D Stencil Example

The scatter can be split into individual updates

for ( i=1; i<=n-1; i++ ) {

ub[i-1] += 2.0 * c[i] * rb[i];

}

for ( i=1; i<=n-1; i++ ) {

ub[i] -= 3.0 * c[i] * rb[i];

}

for ( i=1; i<=n-1; i++ ) {

ub[i+1] += 4.0* c[i] * rb[i];

}
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1D Stencil Example

Shift indices to write to loop counter element

for ( j=0; j<=n-2; j++ ) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

}

for ( j=1; j<=n-1; j++ ) {

ub[j] -= 3.0 * c[j] * rb[j];

}

for ( j=2; j<=n; j++ ) {

ub[j] += 4.0 * c[j-1] * rb[j-1];
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1D Stencil Example

#pragma omp parallel for private(j)

for ( j=2; j<=n-2; j++ ) {

ub[j] += 2.0 * c[j+1] * rb[j+1];

ub[j] -= 3.0 * c[j] * rb[j];

ub[j] += 4.0 * c[j-1] * rb[j-1];

}

ub[0] += 2.0 * c[1] * rb[1];

// ... other remainders: ub[1], ub[n-1], ub[n]
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Higher dimensions

In higher dimensions, we need remainders for edges and corners
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Performance Results - Scalability
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Figure 2: Speedups for the wave equation solver on a Broadwell processor,
using up to 12 threads. The conventinal adjoint code with manual
parallelisation does not scale at all. The primal and PerforAD-generated
adjoint benefit from using all 12 cores. 19



Performance Results - Run times
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Figure 3: Absolute runtimes for wave equation primal and adjoint stencils
and conventional adjoints in serial, as well as best observed primal and
adjoint stencil run time in parallel. The best-observed performance of adjoint
stencils was with 12 threads and is faster than the conventional adjoint by a
factor of 3.4×.

20



PerforAD

• We release tool with this paper to generate these loop nests

• https://github.com/jhueckelheim/PerforAD

import sympy as sp; import perforad

# Define symbols

c = sp.Function("c")

u_1 = sp.Function("u_1"); u_1_b = sp.Function("u_1_b")

u_2 = sp.Function("u_2"); u_2_b = sp.Function("u_2_b")

i,j,k,D,n = sp.symbols("i,j,k,D,n")

# Build stencil expression

u_xx = u_1(i-1) - 2*u_1(i) + u_1(i+1)

expr = 2.0*u_1(i) - u_2(i) + c(i)*D*u_xx

lp = perforad.makeLoopNest(lhs=u(i), rhs=expr,

counters = [i], bounds={i:[1,n-2]})

perforad.printfunction(name="wave1d_perf_b",

loopnestlist=lp.diff({u:u_b, u_1:u_1_b, u_2: u_2_b}))
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Conclusion, Future Work

• PerforAD-generated adjoint stencils preserve scalability of original
program

• Paper discusses differentiation and code generation in more detail

• We also discuss reproducibility and floating point associativity

• See paper for full details, and runtimes on KNL

• Future work:

• Explore other code generation strategies (e.g. fewer remainder loops, but
with branches)

• ML workloads
• SIMD and GPU programs
• Explore other polyhedral transformations in AD context
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Thank you

Thank you

Questions?
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