
DEVITO: A DSL AND COMPILER FOR
AUTOMATED GENERATION OF

PRODUCTION-GRADE WAVE PROPAGATORS

Fabio Luporini, Rhodri Nelson, Mathias Louboutin, 
George Bisbas, Edward Caunt,

Gerard Gorman

From Data Analysis to High-Performance Computing
Domain-Specific Languages in High-Performance Computing

October 2020

Motivation

http://www.open.edu/openlearn/science--maths--technology/science/environmental--science/earths--
physical--resources--petroleum/content--section--3.2.1 2

• Seismic imaging
• FWI, RTM, LS-RTM (TTI, elastic, visco-elastic propagators, etc.)
• Some of the most computational expensive and algorithmically 

complex workloads found in industry.  

• Now maturating strong interest in medical imaging and, more generally, ML  

• Reducing the cost of modernizing software for exascale and Cloud.  

• Skills/knowledge gap between  
geophysicists, data scientists 
and HPC developers.  

http://www.open.edu/openlearn/science

The code really needs to fly

Realistic full-waveform inversion (FWI) scenario
 
-O(103) FLOPs per loop iteration or high memory pressure 
 
-3D grids with >109 grid points 
 
-Often more than 3000 time steps 
 
-Two operators: forward + adjoint, to be executed ~15 times 
 
-Usually 30000 shots 
 
≈ O(billions) TFLOPs 
 
Which means days, or weeks, or months on supercomputers

 3

Traditional approach

void kernel(…) {
 …
 <impenetrable code with aggressive
performance optimizations written
by rockstars, gurus, ninjas,
unicorns and celestial beings>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 4

Raising the level of abstraction

void kernel(…) {
 …
 <impenetrable code with aggressive
performance optimizations written
by rockstars, gurus, ninjas,
unicorns and celestial beings>  
 …
}

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 5

eqn = m * u.dt2 + eta * u.dt - u.laplace

Raising the level of abstraction

void kernel(…) { … }

m
@2u

@t2
+ ⌘

@u

@t
��u = 0

 6

Devito

So, lots of variations in physics, mathematics, platforms, …

• Many formulations of wave equations (R&D still super active)  

• Many space and time discretizations 

• Many types of boundary conditions in finite differences (too many)

• Unstructured computation (e.g., interpolation for sparse data)  

• Proliferation of computer architectures (functional and performance
portability)  

• …

 7

Why raising the level of abstraction?

 8

• Python package — easy to learn (and no, this does not mean it runs slow)  

• Devito is a compiler that generates optimized parallel code:
• C, SIMD, OpenMP, OpenMP 5 offloading, OpenACC, MPI
• x86 (including Xeon Phi series), GPUs , ARM64, Power8/9  

• Composability: integrate with existing codes and AI/ML
• Integrate with existing codes in other languages
• Works out-of-the-box with other popular packages from the Python

ecosystem (e.g. PyTorch, NumPy, Dask, TensorFlow)  

• Open source platform – MIT license.  

• Best practises software engineering: extensive software testing, code
verification, CI/CD, documentation, tutorials and PR code review.  

• Cloud ready

Devito: a DSL and compiler for explicit finite differences

 9

• Started in 2016 … just released Devito v4.2.3:  
• Core compiler is ~20k lines of code, 8k lines of comments for developers 
• ~12k lines of unit and regression tests used in CI/CD (ie automated testing)  
• ~40 Jupyter tutorials and examples - included in CI/CD  
• 32 contributors to the code base, 7 people in the core team.  

• Users:  
• Several companies financially support the open source Devito consortium.

Announced: DUG, BP, Microsoft, Shell.  
• Worked with DUG to bring Devito from research to production grade.  
• Open source collaboration with Chevron and SENAI Cimatec.  
• Several academic groups with expertise in physics and geophysics 
• 370+ people on our open Slack workspace from 100+ different companies and

research institutions.

Growing open source and commercial community

 10

Timeline

2016
Inception

2017 2018 2019 2020 2021

Devito v2.0,
IR sketch

Devito v3.0
(CPU only),
Operator,

performance

Grid,
deps analysis (DA),

checkpointing,
Python3, Conda

Devito v3.2
(still CPU only),

more DA,
immutability,

better IR,
begin work with DUG,

reductions,
pickling,

init cloud integration,
more performance

Devito v3.4
strong IR,

MPI,
Smart DSL,

staggered grids,
subdomains

Devito v3.5
(multi-node CPU),

more performance,
custom stencils

Devito v4.0
initial GPU support,

tensor algebra

Devito v4.2.3+
MPI+CPU+GPU,
finalised (?) IR,

more performance

Devito v4.3
GPU perf,

support for ℂ (?),

…

Testing, CI/CD, documentation, examples, tutorials, …

Devito is part of
several cloud-based

seismic imaging
frameworks

Devito becomes a
true compiler

 11

So… who or what is Devito?

notebook

 12

High level view of a Devito program

Equation1

Equation0

Equationn-1

…

Operator

Readable, editable, …

.cpp .so

Runtime

Equation1

Equation0

Equationn-1

…

Operator

.cpp .so

 13

A glance at the compilation pipeline

figure

 14

Some performance optimizations

NOTE: the implementation of a single optimization may actually
consist of multiple, small compilation passes

Loop transformations

 15

• Loop blocking
• classic
• hierarchical
• overlapped (see next slides)

• Loop fusion 

• Loop fission 

• Loop-invariant code motion 

• SIMD-ization (through OpenMP pragmas)  

• OpenMP
• classic
• nested parallelism
• scheduling heuristics depending on loop body

Expression transformations

 16

• CSE — common sub-expressions elimination  

• CIRE — cross-iteration redundancies elimination (see next slides)  

• Factorization 

• Constant folding 

• Optimization of powers

MPI optimizations
• Computation/communication overlap 

• Fusion of halo exchanges 

• Threaded packing/unpacking 

• Asynchronous poking on the progress engine

CIRE — Cross-Iteration Redundancies Elimination

a = sin(phi[i,j]) + sin(phi[i-1,j-1]) + sin(phi[i+2,j+2])

Observations:
• Same operators (sin), same operands (phi), same indices (i, j)
• Linearly dependent index vectors ([i, j], [i-1, j-1], [i+2, j+2])
• Taking derivatives creates this sort of expressions

 B[i,j] = sin(phi[i,j])

 a = B[i,j] + B[i-1,j-1] + B[i+2,j+2]

Trade-off FLOPs/storage 17

 18

Example: CIRE + Overlapped tiling + SIMD + …

 19

Statistics and performance numbers

Single-socket — Isotropic acoustic on Skylake 8180

best: 60% attainable peak
worst: 44% attainable peak

 20

Software and workloads used in performance tests may have been optimized for performance only on Intel microprocessors. Performance tests, such as SYSmark and MobileMark, are measured using specific computer systems, components, software, operations and functions. Any
change to any of those factors may cause the results to vary. You should consult other information and performance tests to assist you in fully evaluating your contemplated purchases, including the performance of that product when combined with other products. For more complete
information visit www.intel.com/benchmarks. Intel internal measurements as of Dec 2017 on Intel® Xeon Phi™ processor 7250 with 16 GiB MCDRAM, 96 GiB DDR4 and/or Intel® Xeon® processor 8108 with 128 GiB DDR. Benchmark results were obtained prior to implementation of

recent software patches and firmware updates intended to address exploits referred to as "Spectre" and "Meltdown". Implementation of these updates may make these results inapplicable to your device or system.

 21

Single-socket — TTI on Skylake 8180

 22

Multi-socket — on going open source work with Chevron

 23

Devito in Dugwave, DUG’s seismic inversion software

• Dugwave is written in Python  

• It uses Devito to implement, among other things, the wave propagators 

• Some interesting numbers:  

• over the last 90 days, on average ~1300 KNL nodes were running Dugwave, and
therefore Devito, at any given time.  

• this is equivalent to 4PF DP peak  

• Dugwave’s TTI runs on average at 700 Mpts/s (on each KNL, on any given
problem instance) after careful tuning and optimization, with peaks of 800 Mpts/s 

• Early TTI MPI results show ~80% parallel efficiency on 4 nodes at a large spatial
order (i.e. thick halos), without spending a huge amount of time on tuning yet

 24

MPI support

 25

mpirun <mpi args> python app.py

Virtually no changes to user code required!

 26

Acknowledgements

• Thanks for our sponsors who are supporting and collaborating on the
continued open source development of Devito for the wider community

  

 

• Thanks to our many collaborators and contributors. For a full list of
contributors for each release please see 
https://github.com/devitocodes/devito/releases  

https://github.com/devitocodes/devito/releases

Conclusions

• Devito is an open-source high-productivity and high-performance Python 
framework for finite-differences.

• Driven by commercial & research seismic imaging demands:

• Industrial advisory board == Devito consortium.

• Based on actual compiler technology (not a source-to-source translator!)

• Interdisciplinary, interinstitutional, international open source effort.

• Growing open source community and commercial users

 27

Website: http://www.devitoproject.org
GitHub: https://github.com/opesci/devito
Slack: https://join.slack.com/t/devitocodes/shared_invite/zt-gtd2yxj9-Y31YKk_7lr9AwfXeL2iMFg

http://www.devitoproject.org
https://github.com/opesci/devito

 28

Appendix

Experimentation details
• Architectures

• Intel® Xeon® Platinum 8180 Processor (“Skylake”, 28 cores)
• Intel® XeonPhi® 7250 (68 cores)

• Quadrant mode (still no support for NUMA)
• Tried 1, 2, 4 threads per core. Shown best.  

• Compiler
• ICC 18 -xHost -O3
• -xMIC-AVX512 on Xeon Phi
• -qopt-zmm-usage=high on Skylake 

• Runs
• Single socket
• Pinning via Numactl
• On the XeonPhi®, data fits in MCDRAM

• Roofline calculations:
• Memory bandwidth: STREAM
• CPU peak: pen & paper
• Operational intensity: source-level analysis (automated through Devito)

 29

